ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

HISTORIA DE LA MATEMÁTICA


Enviado por   •  5 de Abril de 2015  •  Tesis  •  8.148 Palabras (33 Páginas)  •  173 Visitas

Página 1 de 33

HISTORIA DE LA MATEMÁTICA

Índice

[ocultar]

• 1 Los inicios de la matemática

o 1.1 Prehistoria

o 1.2 Primeras civilizaciones

• 2 Antiguo Oriente Próximo (c. 1800 a. C.–500 a. C.)

o 2.1 Mesopotamia

o 2.2 alba

• 3 Matemática en la Antigua India (del 900 a. C. al 200 d. C.)

• 4 Matemática en la Grecia Antigua (desde el 600 a. C. hasta el 300 d. C.)

• 5 Matemática en la China clásica (c. 500 a. C. – 1300 d. C.)

• 6 Matemática en Japón

• 7 Matemática en la India clásica (hacia 400–1600)

• 8 Matemática islámica (hacia 800-1500)

• 9 Matemática en Occidente

o 9.1 Matemática medieval en Europa

o 9.2 Renacimiento europeo

o 9.3 La Revolución Científica de los siglos XVII y XVIII

• 10 Matemática moderna

o 10.1 Siglo XIX

o 10.2 Siglo XX

o 10.3 Siglo XXI

• 11 Véase también

• 12 Referencias

• 13 Enlaces externos

Los inicios de la matemática[editar]

Prehistoria[editar]

Sistema chino de numeración con varillas.

Mucho antes de los primeros registros escritos, hay dibujos que indican algún conocimiento de matemáticas elementales y de la medida del tiempo basada en las estrellas. Por ejemplo, los paleontólogos han descubierto rocas de ocre en la Cueva de Blombos en Sudáfrica de aproximadamente 70.000 años de antigüedad, que están adornados con hendiduras en forma de patrones geométricos.3 También se descubrieron artefactos prehistóricos en África y Francia, datados entre el 35.000 y el 20.000 a. C.,4 que sugieren intentos iniciales de cuantificar el tiempo.5

Hay evidencias de que las mujeres inventaron una forma de llevar la cuenta de su ciclo menstrual: de 28 a 30 marcas en un hueso o piedra, seguidas de una marca distintiva. Más aún, los cazadores y pastores empleaban los conceptos de uno, dos y muchos, así como la idea de ninguno o cero, cuando hablaban de manadas de animales.6 7 El hueso de Ishango, encontrado en las inmediaciones del río Nilo, al noreste del Congo, puede datar de antes del 20.000 a. C. Una interpretación común es que el hueso supone la demostración más antigua conocida4 de una secuencia de números primos y de la multiplicación por duplicación.

Primeras civilizaciones[editar]

En el periodo predinástico de Egipto del V milenio a. C. se representaban pictóricamente diseños espaciales geométricos. Se ha afirmado que los monumentos megalíticos en Inglaterra y Escocia, del III milenio a. C., incorporan ideas geométricas tales como círculos, elipses yternas pitagóricas en su diseño.8

Las primeras matemáticas conocidas en la historia de la India datan del 3000 - 2600 a. C., en la Cultura del Valle del Indo (civilización Harappa) del norte de la India y Pakistán. Esta civilización desarrolló un sistema de medidas y pesas uniforme que usaba el sistema decimal, una sorprendentemente avanzada tecnología con ladrillos para representar razones, calles dispuestas en perfectos ángulos rectos y una serie de formas geométricas y diseños, incluyendo cuboides, barriles, conos, cilindros y diseños de círculos y triángulos concéntricos y secantes. Los instrumentos matemáticos empleados incluían una exacta regla decimal con subdivisiones pequeñas y precisas, unas estructuras para medir de 8 a 12 secciones completas del horizonte y el cielo y un instrumento para la medida de las posiciones de las estrellas para la navegación. La escritura hindú no ha sido descifrada todavía, de ahí que se sepa muy poco sobre las formas escritas de las matemáticas en Harappa. Hay evidencias arqueológicas que han llevado a algunos a sospechar que esta civilización usaba un sistema de numeraciónde base octal y tenían un valor para π, la razón entre la longitud de la circunferencia y su diámetro.9 10

Por su parte, las primeras matemáticas en China datan de la Dinastía Shang (1600 − 1046 a. C.) y consisten en números marcados en un caparazón de tortuga.11 Estos números fueron representados mediante una notación decimal. Por ejemplo, el número 123 se escribía, de arriba a abajo, como el símbolo para el 1 seguido del símbolo para 100, luego el símbolo para el 2 seguido del símbolo para 10 y, por último, el símbolo para el 3. Este era el sistema de numeración más avanzado en su tiempo y permitía hacer cálculos para usarlos con el suanpan o el ábaco chino. La fecha de invención del suanpan no se conoce con certeza, pero la mención escrita más antigua data del 190 d. C., enNotas suplementarias sobre el Arte de las Cifras, de Xu Yue's.

Antiguo Oriente Próximo (c. 1800 a. C.–500 a. C.)[editar]

Tablilla de arcilla YBC 7289.

Mesopotamia[editar]

Artículo principal: Matemática babilónica

Las matemáticas babilónicas hacen referencia a las matemáticas desarrolladas en Mesopotamia, el actual Irak, desde los días de los primeros sumerios, hasta el inicio del periodo helenístico. Se llaman matemáticas babilónicas debido al papel central de Babilonia como lugar de estudio, que dejó de existir durante el periodo helenístico. Desde este punto, las matemáticas babilónicas se fundieron con las matemáticas griegas y egipcias para dar lugar a las matemáticas helenísticas. Más tarde, bajo el Imperio árabe, Mesopotamia, especialmente Bagdad, volvió a ser un importante centro de estudio para las matemáticas islámicas.

En contraste con la escasez de fuentes en las matemáticas egipcias, el conocimiento sobre las matemáticas en Babilonia se deriva de más de 400 tablillas de arcilla desveladas desde 1850. Labradas en escritura cuneiforme, fueron grabadas mientras la arcilla estaba húmeda y cocidas posteriormente en un horno o secadas al sol. Algunas de ellas parecen ser tareas graduadas.

Las evidencias más tempranas de matemáticas escritas datan de los antiguos sumerios, que constituyeron la civilización primigenia en Mesopotamia. Los sumerios desarrollaron un sistema complejo de metrología desde el 3000 a. C. Desde alrededor del 2500 a. C. en adelante, los sumerios escribieron tablas de multiplicar en tablillas de arcilla y trataron ejercicios geométricos y problemas de división. Las señales más tempranas de los numerales babilónicos también datan de ese periodo.12

La mayoría de las tabletas de arcilla recuperadas datan del 1800 al 1600 a. C. y abarcan tópicos que incluyen fracciones, álgebra, ecuaciones cuadráticas y cúbicas y el cálculo de primos gemelos regulares recíprocos (véase Plimpton 322).13 Las tablillas también incluyen tablas de multiplicar y métodos para resolver ecuaciones lineales y ecuaciones cuadráticas. La tablilla babilónica YBC 7289 da una

...

Descargar como (para miembros actualizados) txt (54 Kb)
Leer 32 páginas más »
Disponible sólo en Clubensayos.com