Introducción A La Gestión De Riess En Proyectos
Enviado por • 11 de Julio de 2015 • 563 Palabras (3 Páginas) • 210 Visitas
1. Modelo de transporte con transbordo
RESOLUCIÓN DE UN PROBLEMA DE TRANSBORDO MEDIANTE PROGRAMACIÓN LINEAL
Para poder resolver un problema de transbordo mediante programación lineal basta con conocer una nueva familia de restricciones, las llamadas restricciones de balanceo. En un problema de transbordo existen 3 clases de nodos, los nodos de oferta pura, los de demanda pura y los nodos transitorios que posibilitan el transbordo y que deben de balancearse para hacer que el sistema sea viable, es decir, que todas las unidades que ingresen a un nodo sean iguales a las que salgan del mismo (unidades que salen + unidades que conserve el nodo).
EL PROBLEMA
Modelar mediante programación lineal el problema de transbordo esbozado en la siguiente figura (dar click para ampliar).
Problema de Transbordo
La figura muestra una serie de nodos y sus respectivas rutas mediante las cuales se supone distribuir las unidades de un producto, el número que lleva cada arco (flecha) representa el costo unitario asociado a esa ruta (arco), y las cantidades que se ubican en los nodos iniciales representan la oferta de cada planta, así como las cantidades de los nodos finales representa la demanda de cada distribuidor.
LAS VARIABLES DE DECISIÓN
En este caso como en la mayoría las variables de decisión deben representar la cantidad de unidades enviadas por medio de cada ruta. Es muy aconsejable denotar cada nodo con un número para simplificar la definición nominal de las variables.
Problema de Transbordo
Una vez renombrado cada nodo definiremos las variables:
XA,C = Cantidad de unidades enviadas desde P1 hacia T1
XA,D = Cantidad de unidades enviadas desde P1 hacia T2
XB,C = Cantidad de unidades enviadas desde P2 hacia T1
XB,D = Cantidad de unidades enviadas desde P2 hacia T2
XC,D = Cantidad de unidades enviadas desde T1 hacia T2
XC,E = Cantidad de unidades enviadas desde T1 hacia D1
XC,F = Cantidad de unidades enviadas desde T1 hacia D2
XD,F = Cantidad de unidades enviadas desde T2 hacia D2
XD,G = Cantidad de unidades enviadas desde T2 hacia D3
XE,F = Cantidad de unidades enviadas desde D1 hacia D2
XF,G = Cantidad de unidades enviadas desde D2 hacia D3
RESTRICCIONES
Existen en este modelo 3 tipos de restricciones y están estrechamente relacionadas con los tipos de nodos existentes, para un nodo oferta pura existe la restricción de oferta; para un nodo demanda pura existe la restricción de demanda, y para un nodo transitorio y/o transitorio de demanda existe la restricción de balance. Recordemos que los nodos transitorios son aquellos que tienen rutas (arcos o flechas) de entrad y salida, y si además este presenta un requerimiento de unidades se denomina transitorio de demanda.
Restricciones de Oferta:
XA,C + XA,D
...