Numeros Reales
Enviado por maracas • 25 de Septiembre de 2012 • 539 Palabras (3 Páginas) • 549 Visitas
Números reales
un número es la expresión de una cantidad con relación a su unidad. El término proviene del latín numĕrus y hace referencia a un signo o un conjunto de signos. La teoría de los números agrupa a estos signos en distintos grupos. Los números naturales, por ejemplo, incluyen al uno (1), dos (2), tres (3), cuatro (4), cinco (5), seis (6), siete (7), ocho (8), nueve (9) y, por lo general, al cero (0).
El concepto de números reales surgió a partir de la utilización de fracciones comunes por parte de los egipcios, cerca del año 1.000 a.C. El desarrollo de la noción continuó con los aportes de los griegos, que proclamaron la existencia de los números irracionales.
Los números reales son los que pueden ser expresados por un número entero (3, 28, 1568) o decimal (4,28; 289,6; 39985,4671). Esto quiere decir que abarcan a los números racionales (que pueden representarse como el cociente de dos enteros con denominador distinto a cero) y los números irracionales (los que no pueden ser expresados como una fracción de números enteros con denominador diferente a cero).
Otra clasificación de los números reales puede realizarse entre números algebraicos (un tipo de número complejo) y números trascendentes (un tipo de número irracional).
Es importante tener en cuenta que los números reales permiten completar cualquier tipo de operación básica con dos excepciones: las raíces de orden par de los números negativos no son números reales (aquí aparece la noción de número complejo) y no existe la división entre cero (no es posible dividir algo entre nada).
Operaciones con números reales
Con números reales pueden realizarse todo tipo de operaciones básicas con dos excepciones importantes:
No existen raíces de orden par (cuadradas, cuartas, sextas, etc.) de números negativos en números reales, (aunque sí existen en el conjunto de los números complejos donde dichas operaciones sí están definidas).
La división entre cero no está definida (pues cero no posee inverso multiplicativo, es decir, no existe número x tal que 0•x=1).
Estas dos restricciones tienen repercusiones en otras áreas de las matemáticas como el cálculo: existen asíntotas verticales en los lugares donde el denominador de una función racional tiende a cero, es decir, en aquellos valores de la variable en los que se presentaría una división entre cero, o no existe gráfica real en aquellos valores de la variable en que resulten números negativos para raíces de orden par, por mencionar un ejemplo de construcción de gráficas en geometría analítica.
Tipos de números reales
Un número real puede ser un número racional o un número irracional. Los números racionales son aquellos que pueden expresarse como el cociente de dos números enteros, tal como 3/4, -21/3, 5, 0, 1/2, mientras que los irracionales son
...