Planteamiento De Modelos Matematicos
Enviado por ronalmark • 2 de Junio de 2014 • 385 Palabras (2 Páginas) • 580 Visitas
Planteamiento de modelos matemáticos de optimización de recursos.
Clásica
Métodos clásicos
• Buscan el óptimo “localmente”
• Garantizan el óptimo numérico
• Permiten un elevado número de restricciones
Metaheurísticos
Métodos Metaheurísticos
• Imitan fenómenos sencillos observados en la naturaleza
• “globales”, mecanismos específicos para evitar óptimos locales
• NO garantizan la obtención del óptimo
• NO permiten elevado número de restricciones
• Exploran gran número de soluciones en tiempo muy corto
• Aplicados principalmente a problemas combinatoriales
Modelo
Definición: Esquema teórico, generalmente en forma matemática, de un sistema o de una realidad compleja (por ejemplo, la evolución económica de un país), que se elabora para facilitar su comprensión y el estudio de su comportamiento.
• Representación precisa de una realidad
• Herramienta de ayuda a la toma de decisiones
• Puede involucrar equipo multidisciplinar
• Equilibrio entre representación detallada y capacidad de
• obtener la solución
Modelador: Específica y desarrolla el modelo
Experto: Conoce el problema real
Existen dos riesgos en los modelos:
• Modelado exhaustivo, cuasi real. Puede ocasionar la carencia de un algoritmo que solucione el problema
• Modelado simplista para utilizar un algoritmo disponible. Pueden llegar a darse soluciones de un problema que no existe
Etapas de desarrollo de un modelo de optimización
• Identificación del problema
• Especificación matemática y formulación
• Resolución
• Verificación, validación y refinamiento
• Interpretación y análisis de resultados
Identificación del problema.
• Recolección de información relevante.
• Definición del problema en términos vagos.
• Interpretación y traducción a términos precisos.
• Datos son vitales, suelen ser cuello de botella.
• Etapa fundamental para que decisiones sean útiles
• Es imprescindible asegurarse de que el modelo representa adecuadamente la realidad que pretende reflejar.
Datos de entrada.
GIGOLO (Garbage In, Garbage Out, Look Out!)
El mejor modelo no sirve de nada si los datos de entrada no están adecuadamente refinados.
Especificación matemática y formulación
• Definición de variables, ecuaciones, función objetivo, parámetros.
• Identificación de tipo de problema (LP, MIP, NLP).
• Énfasis en precisión y belleza en la formulación.
• Análisis de tamaño y estructura del problema.
• Categorías
...