Como usar minitab en pruebas de hipótesis
Enviado por ISHTAR KYRA CUEVA HERNÁNDEZ • 22 de Abril de 2023 • Tutorial • 1.095 Palabras (5 Páginas) • 58 Visitas
DISEÑO COMPLETAMENTE AL AZAR (Un factor)
Estructura de los datos
TRATAMIENTOS
T1 | T2 | . | . | . | Tk |
Y11 | Y21 | . | . | . | Yk1 |
Y12 | Y22 | . | . | . | Yk2 |
. | . | . | |||
. | . | . | |||
. | . | . | |||
Y1 n1 | Y2 n2 | . | . | . | Yk nk |
Y1. | Y2. | . | . | . | Yk. |
Yij i=1,2,…,k tratamientos j=1,2,…,ni repeticiones en cada tratamiento
Prueba de Bartlett para homogeneidad de varianzas
Ho: σ21=σ22= . . . =σ2k σ2i: Varianza de tratamiento i-ésimo
Ha: al menos un σ2i es diferente
[pic 1]
Rdd Rechazar Ho si X2o > X2(k-1)(α)
PRUEBA DE EFECTO DE TRATAMIENTOS
Ho τ1=τ2= . . . =τk τi: efecto de tratamiento i-ésimo
Ha al menos un τi es diferente
Ho µ1=µ2= . . . =µk µi: efecto promedio del tratamiento Ha: al menos una µi es diferente i-ésimo
[pic 2]
Rdd Rechazar Ho si Fo > F(k-1)(N-k)(α)
Comparaciones o pruebas de rango múltiples
Método LSD (diferencia mínima significativa)
[pic 3]
DISEÑO DE BLOQUES (dos factores)
TRATAMIENTOS
T1 | T2 | . | . | . | Tk | Y.j | ||
B | B1 | Y11 | Y21 | . | . | . | Yk1 | Y.1 |
L | B2 | Y12 | Y22 | . | . | . | Yk2 | Y.2 |
O | . | . | . | . | ||||
Q | . | . | . | . | ||||
U | . | . | . | . | ||||
E | ||||||||
S | Bb | Y1 b | Y2 b | . | . | . | Yk b | Y.b |
Yi. | Y1. | Y2. | . | . | . | Yk. | Y.. |
Yij i=1,2,…,k tratamientos j=1,2,…,b bloques
Prueba de Bartlett para homogeneidad de varianzas
Ho: σ21=σ22= . . . =σ2k σ2i: Varianza de tratamiento i-ésimo
...