ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

EL MOVIMIENTO PARABOLICO.


Enviado por   •  11 de Agosto de 2016  •  Apuntes  •  787 Palabras (4 Páginas)  •  184 Visitas

Página 1 de 4

Solución de ecuaciones cuadráticas

Solución por factorización

En toda ecuación  cuadrática uno  de sus miembros es un polinomio de segundo grado y el otro es cero; entonces, cuando el polinomio de segundo grado pueda factorizarse, tenemos que convertirlo en un producto de binomios.

Obtenido el producto de binomios, debemos buscar el valor de x de cada uno.

Para hacerlo igualamos a cero cada factor y se despeja para la variable. Igualamos a cero ya que sabemos que si un producto es igual a cero, uno de sus multiplicandos, o ambos, es igual a cero.

Ejemplos

1) Resolver

(x + 3)(2x − 1) = 9

Lo primero es igualar la ecuación a cero.

Para hacerlo, multiplicamos los binomios:

[pic 1]

Ahora, pasamos el 9, con signo contrario, al primer miembro para igualar a cero:

[pic 2]

Ahora podemos factorizar esta ecuación:

(2x − 3)(x + 4) = 0

Ahora podemos igualar a cero cada término del producto para resolver las incógnitas:

Si

2x − 3 = 0

2x = 3

[pic 3]
Si

x + 4 = 0

x = −4

Solución por completación de cuadrados

Se llama método de la completación de cuadrados porque se puede completar un cuadrado geométricamente, y porque en la ecuación cuadrática se pueden realizar operaciones algebraicas que la transforman en una ecuación del tipo:

(ax + b)2 = n

en la cual el primer miembro de la ecuación (ax + b)2, es el cuadrado de la suma de un binomio.

Partiendo de una ecuación del tipo

x2 + bx + c = 0

por ejemplo, la ecuación

x2 + 8x = 48, que también puede escribirse   x2 + 8x − 48 = 0

Al primer miembro de la ecuación (x2 + 8x) le falta un término para completar el cuadrado de la suma de un binomio del tipo
(ax + b)2

Que es lo mismo que

(ax + b) (ax + b)

Que es lo mismo que

(ax)2 + 2axb + b2

En nuestro ejemplo

x2 + 8x = 48, el 8 representa al doble del segundo número del binomio, por lo tanto, ese número debe ser obligadamente 8 dividido por 2 (8/2), que es igual a 4, y como en el cuadrado de la suma de un binomio ( a2 + 2ab + b2) el tercer término corresponde al cuadrado del segundo término (42 = 16) amplificamos ambos miembros de la ecuación por 16, así tenemos

x2 + 8x + 16 = 48 + 16

x2 + 8x + 16 = 64

la cual, factorizando, podemos escribir como sigue:

(x + 4) (x + 4) = 64

Que es igual a

(x + 4)2 = 64

Extraemos raíz cuadrada de ambos miembros y tenemos

[pic 4]

 Nos queda

x + 4 = 8

Entonces

x = 8 − 4

x = 4

Se dice que "se completó un cuadrado" porque para el primer miembro de la ecuación se logró obtener la expresión (x + 4)2, que es el cuadrado perfecto de un binomio.

Solución por la fórmula general

Existe una fórmula que permite resolver cualquier ecuación de segundo grado, que es la siguiente:

[pic 5]

...

Descargar como (para miembros actualizados) txt (5 Kb) pdf (114 Kb) docx (18 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com