ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Estadistica


Enviado por   •  7 de Junio de 2015  •  6.548 Palabras (27 Páginas)  •  636 Visitas

Página 1 de 27

1.1 MUESTREO

En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población), se selecciona una muestra, entendiendo por tal una parte representativa de la población.

El muestreo es lo tanto una herramienta de la investigación científica, cuya función básica es determinar que parte de una población debe examinarse, con la finalidad de hacer inferencias sobre dicha población.

La muestra debe lograr una representación adecuada de la población, en la que se reproduzca de la mejor manera los rasgos esenciales de dicha población

que son importantes para la investigación. Para que una muestra sea representativa, y por lo tanto útil, debe de reflejar las similitudes y diferencias encontradas en la población, es decir ejemplificar las características de ésta.

Los errores más comunes que se pueden cometer son:

1.-Hacer conclusiones muy generales a partir de la observación de sólo una parte de la Población, se denomina error de muestreo.

2.-Hacer conclusiones hacia una Población mucho más grandes de la que originalmente se tomo la muestra. Error de Inferencia.

En la estadística se usa la palabra población para referirse no sólo a personas si no a todos los elementos que han sido escogidos para su estudio y el término muestra se usa para describir una porción escogida de la población.

1.1.1 Tipos de muestreo: aleatorio simple, sistemático, por estratos y por conglomerados.

Los tipos más comunes de técnicas de muestreo aleatorios son:

•el muestreo aleatorio simple,

• el muestreo estratificado,

• el muestreo por conglomerados y

• el muestreo sistemático.

Si una muestra aleatoria se elige de tal forma que todos los elementos de la población tengan la misma probabilidad de ser seleccionados, la llamamos muestra aleatoria simple.

Ejemplo 1

Suponga que nos interesa elegir una muestra aleatoria de 5 estudiantes en un grupo de estadística de 20 alumnos. Las combinaciones se escriben 20C5 lo que da el número total de formas de elegir una muestra no ordenada y este resultado es igual a 15,504 maneras diferentes de tomar la muestra. Un procedimiento simple para elegir una muestra

aleatoria sería escribir cada uno de los 20 nombres en pedazos separados de papel, colocarlos en un recipiente, revolverlos y después extraer cinco papeles al mismo tiempo.

Otro método parea obtener una muestra aleatoria de 5 estudiantes en un grupo de 20 utiliza una tabla de números aleatorios. Se puede construir la tabla usando una calculadora o una computadora o con métodos de selección al azar.

Hay muchas situaciones en las cuales el muestreo aleatorio simple es poco práctico, imposible o no deseado; aunque sería deseable usar muestras aleatorias simples para las encuestas nacionales de opinión

sobre productos o sobre elecciones presidenciales, sería muy costoso o

tardado.

El muestreo estratificado requiere de separar a la población según grupos que no se traslapen llamados estratos, y de elegir después una muestra aleatoria simple en cada

estrato. La información de las

muestras aleatorias simples de cada estrato constituiría entonces una muestra global.

Ejemplo 2

Suponga que nos interesa obtener una muestra de las opiniones de los profesores de una gran universidad. Puede ser difícil obtener una muestra con todos los profesores, así que supongamos que elegimos una muestra aleatoria de cada colegio, o departamento académico; los estratos vendrían a ser los colegios, o departamentos académicos.

El muestreo por conglomerados requiere de elegir una muestra aleatoria simple de unidades heterogéneas entre sí de la población llamadas conglomerados.

Cada elemento de la población pertenece exactamente a un conglomerado, y los elementos dentro de cada conglomerado son usualmente heterogéneos o disímiles.

Ejemplo 3

Suponga que una compañía de servicio de televisión por cable está pensando en abrir una sucursal en una ciudad grande; la compañía planea realizar un estudio para determinar el porcentaje de familias que utilizarían sus servicios, como no es práctico preguntar en cada casa, la empresa decide seleccionar una parte de la ciudad al azar, la cual forma un conglomerado.

En el muestreo por conglomerados, éstos se forman para representar, tan fielmente como sea posible, a toda la población; entonces se usa una muestra aleatoria simple de conglomerados para estudiarla. Los estudios de instituciones sociales como iglesias, hospitales, escuelas y prisiones se realizan, generalmente, con base en el muestreo por

conglomerados.

El muestreo sistemático es una técnica de muestreo que requiere de una selección aleatoria inicial de observaciones seguida de otra selección de observaciones obtenida usando algún sistema o regla.

Ejemplo 4

Para obtener una muestra de suscriptores telefónicos en una ciudad grande, puede obtenerse primero una muestra aleatoria de los números de las páginas del directorio telefónico; al elegir el vigésimo nombre de cada página obtendríamos un muestreo sistemático, también podemos escoger un nombre de la primera página del directorio y después seleccionar cada nombre del lugar número cien a partir del ya seleccionado.

En este caso, podríamos seleccionar un número al azar entre los primeros 100; supongamos que el elegido es el 40, entonces seleccionamos los nombres del directorio que corresponden a los números 40, 140, 240, 340 y así sucesivamente.

1.2 DISTRIBUCIONES MUESTRALES

Las muestras aleatorias obtenidas de una población son, por naturaleza propia, impredecibles. No se esperaría que dos muestras aleatorias del mismo tamaño y tomadas de la misma población tenga la misma media muestral o que sean completamente parecidas; puede esperarse que cualquier estadístico, como la media muestral, calculado a partir de las medias en una muestra aleatoria, cambie su valor de una muestra a otra, por ello, se quiere estudiar la distribución de todos los valores posibles de un estadístico. Tales distribuciones serán muy importantes en el estudio de la estadística inferencial, porque las inferencias sobre las poblaciones se harán usando estadísticas muéstrales.

Con el análisis de las distribuciones asociadas con los estadísticos muestrales, podremos juzgar la confiabilidad de un estadístico muestral como un instrumento para hacer inferencias sobre un parámetro poblacional desconocido.

Como los valores de un estadístico,

...

Descargar como (para miembros actualizados) txt (37 Kb)
Leer 26 páginas más »
Disponible sólo en Clubensayos.com