Estadística y pronósticos para la toma de decisiones. Estadística y series de tiempo
Enviado por Leonila Verezaluces • 25 de Septiembre de 2018 • Tarea • 1.822 Palabras (8 Páginas) • 133 Visitas
Nombre: Paola de la Cruz Ramos | Matrícula: al02826395 |
Nombre del curso: Estadística y pronósticos para la toma de decisiones | Nombre del profesor: Juan Carlos Loperena Reyes |
Módulo: 1. Estadística y series de tiempo. | Actividad: Evidencia 1 |
Fecha: 13 de junio de 2018 | |
Bibliografía:
|
[pic 2][pic 3]
Evidencia 1.
Aplicación de medidas de tendencias central, dispersión y pruebas de hipótesis en el planteamiento de un problema, así como la utilización del análisis de regresión y correlación lineal simple entre variables cuantitativas.
Parte 1
1. Define lo que significan los términos de:
- Serie de tiempo
Se le llama serie de tiempo a aquellos datos registrados por medio de la observación a lo largo de incrementos sucesivos de tiempo. Es decir, en cierto periodo de tiempo.
- Componentes de una serie de tiempo
Sus componentes generales son los de tendencia, estacional, cíclica e irregular. La tendencia es el componente que hace referencia al largo plazo que representa el crecimiento o decrecimiento de una serie de tiempo, esto debe ser durante un periodo extenso. Este componente es un patrón que se repite año con año, tal como una estación, que tiende a repetirse. el siguiente componente, el cíclico, hace referencia al movimiento que hay alrededor de una tendencia, formando así ciclos. El componente irregular se presenta en intervalos cortos y sigue un patrón aleatorio.
- Correlación
Se refiere a la relación que existe entre datos con diferentes periodos. Esta relación que tienen los datos se da con frecuencia en la serie de tiempo.
- Autocorrelación
El coeficiente de correlación es la manera en la que se mide la correlación de los datos.
2. Con la información que obtuviste contesta lo siguiente:
- ¿Qué significa el coeficiente de correlación? ¿Para qué sirve?
El coeficiente de correlación sirve para mostrar las tendencias y estacionalidades de los datos que están relacionados. De tal forma que nos permite analizar las autocorrelaciones. Sirve también para medir que tanto se relacionan linealmente dos variables entre sí.
- Indica en qué situaciones de la vida diaria se pueden aplicar estos conceptos, da un ejemplo de cada término.
Las aplicaciones de las series de tiempo en la vida diaria van desde asuntos para la organización, por ejemplo, una serie de tiempo en la que se registran los datos una escuela, sabiendo así el número de alumnos que egresan cada año. También van hasta proyecciones de ventas en un establecimiento, proyecciones en el crecimiento de la población de un país, etc.
Componentes de serie de tiempo. Hay muchos ejemplos de series de tiempo, tratando de ejemplificar sus componentes, se puede decir que uno sobre la tendencia sería la población de México desde 1900 hasta la fecha. Es un periodo extenso y nos dirá si hay tendencia creciente o decreciente.
Un ejemplo de una serie de tiempo con componentes estacionales puede ser el registro de las temperaturas en algún estado de la república. Por ejemplo, en Nuevo León se puede observar que los meses con más bajas temperaturas son diciembre y enero.
El ejemplo más claro de una serie de tiempo cíclico es el comportamiento de la economía en general, esta siempre va mostrar algún punto máximo, va a decrecer hasta llegar a una crisis y volverá a crecer para repetirse el ciclo.
La serie de tiempo irregular usualmente se da por periodos cortos y son cosas muy difíciles de expresar. Podría ser el registro de cuantas veces se ha estrellado un meteoro en la luna.
El ejemplo para cuando se aplica la correlación se puede dar en muchos ámbitos, usualmente en ámbitos de estudios o algún área de interés de alguna persona o institución. A una empresa como Chedrahui le conviene saber si existe alguna relación entre sus clientas y la venta de artículos de belleza, para así poder poner estrategias de venta enfocado a las mujeres o hacia los hombres. Otro ejemplo, es que al gobierno le interesa saber si existe alguna relación entre el nivel de delincuencia y la educación impartida, así podrá saber si invierte el dinero en más escuelas o en más policías.
Parte 2
¿Cuánto tiempo dedica una persona en promedio a Internet? Para tener una idea de esto, realiza un censo con los siguientes puntos:
3. Pregunta de manera individual a 10 personas del género masculino y a 10 personas del género femenino la siguiente información:
- Su edad.
- Tiempo que dedica diariamente a Internet.
Datos recabados de amigos y familiares.
MUJERES | HOMBRES | ||
EDAD | HRS | EDAD | HRS |
24 | 6 | 20 | 8 |
50 | 2 | 29 | 11 |
24 | 3 | 15 | 8 |
49 | 4 | 26 | 5 |
28 | 7 | 23 | 7 |
16 | 10 | 32 | 4 |
24 | 2 | 30 | 5 |
30 | 5 | 25 | 5 |
27 | 6 | 35 | 3 |
34 | 5 | 30 | 4 |
4. Con una calculadora de bolsillo y con base en esta información realiza lo siguiente:
- En promedio, ¿quién dedica más tiempo a Internet, hombres o mujeres?
Haciendo el calculo tenemos que los hombres dedican más tiempo que las mujeres, siendo su promedio de 6 horas diarias.
...