Este teorema es una continuidad del T. de Roller; manteniendo algunas consideraciones adicionales
Enviado por diana_mt98 • 6 de Septiembre de 2017 • Informe • 1.062 Palabras (5 Páginas) • 214 Visitas
Teorema del un valor medio
Este teorema es una continuidad del T. de Roller; manteniendo algunas consideraciones adicionales
. Que se utiliza en la formula de T.V.M los valores hallados de f(a) y (b)
. Se utiliza una formula especial, para el T.V.M.
. No siempre resultan 2 valores de c1 y c2
[f’(c) ] [b-a]= f(b) – f(a)
33. dada f(x)= -x2 + 8 x -6.. verificar si f(x) cumple con el lineamiento indicado en la aplicación de T.V.M.
f(x) = - x2+8 – 6
f (2) = - (2)2 + 8 (2) – 6 = - 4 + 16 – 6 = 6
f (3) = - (3)2 + 8 (3) – 6 – 9 + 24 – 6 = 9
f (x) = - x2 + 8x – 6
f’ (x) = - 2x + 8
f’ (x) = 0 x=0
f’ (x) = - 2c + 8
[f ‘(c)] [b – a] = f (b) – f (a)
[- 2c + 8] [3 – 2] = 9 – 6
[- 2c + 8] [1] =3
-2c + 8 = - 2c = 3 – 8
-2c= 5
C= 5/2 = 2.5
(0,2.5)
44. f(x) = x3 + x + 2… [2,4]
f (a) = f (2) = 23 + 2 + 2 = 8 + 2 + 2 = 12
f (b) = f(4) = 43 + 4 + 2 = 70
f (x) = x3 + 3x + 2
f’ (x) = 3x + 2 + 1
f’ (x) = 0
f’ (c) = 3c2 + 1
[f’(c) ] [b-a]= f(b) – f(a)
[3c2 + 1] [4 – 2] = 70 – 12
[3c2 + 1] [2] = 58
[6c2 + 2] =58
6c2 + 2 = 58
6c2 + = 58 – 2
6c2 = 56
C2 = 56/6
C= [pic 1]
C=± [pic 2]
C=± 3.055
45. f(x) = 2x3 - 3x2 + 3x - 1 … [-3,4]
f (a) = f (-3) = 2(-3)3 – 3(-3)2 + 3(-3) – 1 = -91
f (b) = f(4) = 2(4)3 – 3(4)2 + 3(4) – 1 = 91
f (x) = 2x3 - 3x2 + 3x - 1
f’ (x) = 6x2 – 6x + 3
f’ (x) = 0 x = c
f’ (c) = 6c2 – 6c + 3
[f’(c) ] [b-a]= f(b) – f(a)
[6c2 – 6c + 3] [4 – (-3) ] = 91 – (-91)
[6c2 – 6c + 3] [7] = 182
42c2 – 42c + 21 = 182
42c2 – 42c + 21 – 182 =0
42c2 – 42c - 161 = 0
a=42 b= -42 c= -161
c= [pic 3]
c= [pic 4]
c= [pic 5]
c= [pic 6]
c= [pic 7]
c= c= [pic 8][pic 9]
46. f(x) = 4x3 - 3x2 + 6x - 2 … [-3,4]
f (a) = f (-3) = 4(-3)3 – 3(-3)2 + 6(-6) – 2 = - 155
f (b) = f(4) = 4(4)3 – 3(4)2 + 6(4) – 2 = 230
f (x) = 4x3 - 3x2 + 6x - 2
f’ (x) = 12x2 – 6x + 6
f’ (x) = 0 x = c
f’ (c) = 12c2 – 6c + 6
[f’(c) ] [b-a]= f(b) – f(a)
[12c2 – 6c + 6] [4 – (-3) ] = 230 – (-155)
[12c2 – 6c + 6] [7] = 385
84c2 – 42c + 42 = 385
84c2 – 42c + 42 - 385 = 0
84c2 – 42c - 343 = 0
a=84 b= -42 c= -343
c= [pic 10]
c= [pic 11]
c= [pic 12]
c= [pic 13]
c= [pic 14]
...