Factorizar un polinomio consiste en escribirlo como un producto de polinomios de inferior grado. Todo polinomio mediante la factorización puede expresarse en productos de polinomios de primer y segundo grado.
Enviado por eliy_eliy • 19 de Abril de 2017 • Trabajo • 5.362 Palabras (22 Páginas) • 356 Visitas
FACTORIZACIÓN
Factorizar un polinomio consiste en escribirlo como un producto de polinomios de inferior grado. Todo polinomio mediante la factorización puede expresarse en productos de polinomios de primer y segundo grado.
Cuando realizamos las multiplicaciones :
1. 2x(x2 – 3x + 2) = 2x3 – 6x2 + 4x
2. (x + 7)(x + 5) = x2 + 12x + 35
entonces vemos que las expresiones de la izquierda son los factores y las de la derecha son las expresiones a factorizar, es decir , la factorización es el proceso inverso de la multiplicación.
La factorización es de extrema importancia por sus aplicaciones en las matemáticas.
-Simplificación de expresiones algebraicas.
-Resolución de ecuaciones e inecuaciones.
-Estudio del signo de un polinomio y de una fracción algebraica.
Existen varios procedimientos para llevar a cabo la factorización.
1. FACTOR COMUN:
Factor común: es el factor que está presente en cada término del polinomio :
Ejemplo N° 1: ¿ cuál es el factor común en 12x + 18y - 24z ?
Entre los coeficientes es el 6, o sea, 6·2x + 6·3y - 6· 4z = 6(2x + 3y - 4z )
Ejemplo N° 2 : ¿ Cuál es el factor común en : 5a2 - 15ab - 10 ac
El factor común entre los coeficientes es 5 y entre los factores literales es a, por lo tanto
5a2 - 15ab - 10 ac = 5a·a - 5a·3b - 5a · 2c = 5a(a - 3b - 2c )
Ejemplo N° 3 : ¿ Cuál es el factor común en 6x2y - 30xy2 + 12x2y2
El factor común es “ 6xy “ porque
6x2y - 30xy2 + 12x2y2 = 6xy(x - 5y + 2xy )
Realiza tú los siguientes ejercicios :
EJERCICIOS. Halla el factor común de los siguientes ejercicios :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
| |
| |
|
2. FACTOR COMUN POLINOMIO:
Es el polinomio que aparece en cada término de la expresión :
EJEMPLO N° 1.
Factoriza x(a + b ) + y( a + b ) =
Existe un factor común que es (a + b ) = x(a + b ) + y( a + b ) =
= ( a + b )( x + y )
EJEMPLO N° 2.
Factoriza 2a(m - 2n) - b (m - 2n ) =
...