ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Lenguaje Y Comunicacion


Enviado por   •  2 de Noviembre de 2013  •  2.701 Palabras (11 Páginas)  •  244 Visitas

Página 1 de 11

Precisión[editar · editar código]

Lo esencial del instrumento son las escalas numéricas, unas fijas y otras móviles, mediante las que se realizan las operaciones. La precisión que pueda conseguirse de un aparato determinado depende de la longitud que en él tengan estas escalas, pues viene limitada por las estimaciones de valores que pueda realizar quien lo utilice, proceso consustancial al método y al que se denomina interpolación visual o a la vista. Se han construido reglas de muy diversos tamaños, lo que en principio podría parecer arbitrario, pero no lo es; si el trabajo a realizar es delicado, deberá utilizarse la regla más larga posible. Por ejemplo, para conseguir una precisión de una parte en 10.000 la escala ha de tener una longitud de 12 m (como sucede en el modelo cilíndrico de Fuller, fabricado a partir de 1878). Los tamaños habituales no superan las tres cifras significativas en manos experimentadas, pues la última ya será casi siempre estimada.

Naturalmente lo anterior presupone que las marcas de las escalas están hechas con absoluta precisión sobre las reglas. Esto es una suposición razonable en los ejemplares actuales, en concreto en los comercialmente disponibles a partir de comienzos del siglo XX, en que empezaron a aplicarse técnicas mecánicas precisas de fabricación, pero no lo es en absoluto para los precedentes, cuyas escalas estaban realizadas individualmente o con técnicas deficientes, por lo que muchos de ellos resultaban bastante alejados de la perfección. Esta fue otra razón importante para la lentitud con que se extendió su uso.

Se ha manifestado la opinión que la limitada precisión de la regla de cálculo es una ventaja y no un inconveniente cuando se trata de aplicaciones prácticas, pues los datos disponibles sobre los que versa el cálculo no suelen superar las tres cifras significativas. Se evita así con ella el espejismo de la falsa precisión, al que pueden inducir las calculadoras electrónicas si no se utilizan prudentemente.

Formas y materiales[editar · editar código]

A lo largo de los tiempos estas escalas han variado mucho en naturaleza, tamaño y número y se han organizado de muy variadas formas, disponiéndoselas sobre superficies rectangulares, circulares y cilíndricas. La realización más común es la que utiliza una tablilla rectangular plana, de la que deriva su nombre de "regla". Los materiales utilizados han dependido de las épocas, lugares y técnicas de construcción disponibles. Se han fabricado de cartón y papel maché, de maderas duras (como el boj), de bambú, metálicas (de bronce, latón y otros metales), de diversos materiales plásticos, etc.

Manejo de la regla cálculo[editar · editar código]

Lo fundamental para poder utilizar bien la regla de cálculo es comprender la naturaleza de sus escalas. En el caso de las básicas esto no ofrece mayor dificultad, como tampoco lo hace en el caso de las más usuales, sobre todo si están rotuladas con los símbolos antes indicados en la tabla.

De no ser así se necesita consultar el manual del modelo concreto de regla de que se disponga (lo que no suele ser fácil porque es lo primero que se pierde del conjunto). Afortunadamente ahora se dispone de bastante información al respecto en la red, con la que quizá pueda suplirse esta deficiencia. Por ejemplo, puede resultar útil consultar el manual del modelo Faber-Castell Novo-Biplex 2/83 N , que es bastante detallado y trata de una regla que disponía de muchas escalas. Los manuales en español de muchos modelos europeos, entre ellos el acabado de referir, junto con otra amplia información, pueden obtenerse aquí.

Las otras dos habilidades fundamentales con que se ha de contar son: la práctica en la lectura de los valores y la fijación del punto decimal.

Las superficies de las reglas de cálculo suelen estar muy congestionadas, en un intento de dotarlas de la máxima funcionalidad, por lo que es fácil confundirse tanto al establecer los valores iniciales como al obtener el resultado. Además de ello hay que estimar sus últimas cifras. Los remedios aplicables para sortear estos peligros son: a) poner la atención necesaria al operar y b) contar con un poco de práctica.

Las escalas logarítmicas no indican más que la parte decimal de los números, la llamada «mantisa». En el caso de los logaritmos decimales la parte entera, llamada «característica», es el exponente de la potencia de diez correspondiente al dato. El logaritmo de 5600 es 3,74819 (= exp 10³ + 0,74819) y el de 5,6 es 0,74819 (= exp 100 + 0,74819). Por eso la escala se repite cada diez enteros, en lo que se llama a veces un ciclo. Las escalas C y D, las escalas básicas de toda regla de cálculo, son escalas de un ciclo, no abarcan más que de 1 a 10, pero este último 10 también se representa mediante un 1 por ser el comienzo de la siguiente decena. Las escalas A y B son escalas de dos ciclos, dispuestos en el mismo espacio que la decena de las C y D. Por eso sus valores representan los cuadrados de éstas y así sucesivamente. Pero eso quiere decir que hay que tener cuidado de no confundir la primera decena con la segunda, ni las primeras cifras de los números con las segundas. Por ejemplo, 1,5² es 2,25, pero las marcas que para ello han de alinearse en las diversas escalas son: una que ostenta encima un 5 y otra sin cifra, comprendida entre el 2 y el 3, a la que hay que asignarle el valor. Para actuar con seguridad es imprescindible contar con el auxilio de una operación mental aproximada. Si se calculan mentalmente los cuadrados de 1 y de 2, se tendrá el convencimiento que 2,25 es un valor razonable para el cuadrado de 1,5 y que por tanto la operación se ha hecho bien. Si lo que se calcula en cambio es 4,2² es evidente que la respuesta no puede ser 1,76, que es lo que literalmente indica la escala, sino que ha de ser superior a 10, e incluso a 16, y por tanto es 17,6. Hay que tener el sentido de la serie de potencias de 10; y, si no se tiene, hay que adquirirlo.

Si la solución del problema en el que se esté utilizando la regla de cálculo implica una serie de operaciones encadenadas, lo más seguro es anotar los resultados intermedios en un papel con un lápiz. Con algo de práctica puede utilizarse también el cursor para estas transferencias en bastantes casos.

La naturaleza exhaustiva de las soluciones nomográficas hace que, si un nomograma puede realizar determinada operación aritmética, también pueda realizar su inversa. Por tanto, cuando se habla de elevación a potencias se está hablando simultáneamente de extracción de raíces de esos mismos exponentes, cuando de multiplicación, también de división, etc. Lo único que se requiere para pasar de una a otra es aplicar el mismo procedimiento cambiando el orden de las escalas.

Escalas y tipología[editar

...

Descargar como (para miembros actualizados) txt (17 Kb)
Leer 10 páginas más »
Disponible sólo en Clubensayos.com