ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Matematicas


Enviado por   •  27 de Marzo de 2013  •  3.414 Palabras (14 Páginas)  •  334 Visitas

Página 1 de 14

Matemáticas:

1.Algebra:

1.1 Números naturales, enteros, fracciones, aritmética y exponentes:

Números Naturales:

Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto es cualquiera de los números que se usan para contar los elementos de un conjunto. Reciben ese nombre porque fueron los primeros que utilizó el ser humano para la enumeración.

Los números naturales son infinitos. El conjunto de todos ellos se designa por N:

N = {0, 1, 2, 3, 4,…, 10, 11, 12,…}

El cero, a veces, se excluye del conjunto de los números naturales.

Además de cardinales (para contar), los números naturales son ordinales, pues sirven para ordenar los elementos de un conjunto:

1º (primero), 2º (segundo),…, 16º (decimosexto),…

Entre los números naturales están definidas las operaciones adición y multiplicación. Además, el resultado de sumar o de multiplicar dos números naturales es también un número natural, por lo que se dice que son operaciones internas.

La sustracción, sin embargo, no es una operación interna en N, pues la diferencia de dos números naturales puede no ser un número natural (no lo es cuando el sustraendo es mayor que el minuendo). Por eso se crea el conjunto Z de los números enteros, en el que se puede restar un número de otro, cualesquiera que sean éstos.

La división tampoco es una operación interna en N, pues el cociente de dos números naturales puede no ser un número natural (no lo es cuando el dividendo no es múltiplo del divisor). Por eso se crea el conjunto Q de los números racionales, en el que se puede dividir cualquier número por otro (salvo por el cero). La división entera es un tipo de división peculiar de los números naturales en la que además de un cociente se obtiene un resto

Propiedades de la adición/suma de Números Naturales

La adición de números naturales cumple las propiedades asociativa, conmutativa y elemento neutro.

1.- Asociativa:

Si a, b, c son números naturales cualesquiera se cumple que:

(a + b) + c = a + (b + c)

Por ejemplo:

(7 + 4) + 5 = 11 + 5 = 16

7 + (4 + 5) = 7 + 9 = 16

Los resultados coinciden, es decir,

(7 + 4) + 5 = 7 + (4 + 5)

2.-Conmutativa

Si a, b son números naturales cualesquiera se cumple que:

a + b = b + a

En particular, para los números 7 y 4, se verifica que:

7 + 4 = 4 + 7

Gracias a las propiedades asociativa y conmutativa de la adición se pueden efectuar largas sumas de números naturales sin utilizar paréntesis y sin tener en cuenta el orden.

3.- Elemento neutro

El 0 es el elemento neutro de la suma de enteros porque, cualquiera que sea el número natural a, se cumple que:

a + 0 = a

Propiedades de la Multiplicación de Números Naturales

La multiplicación de números naturales cumple las propiedades asociativa, conmutativa, elemento neutro y distributiva del producto respecto de la suma.

1.-Asociativa

Si a, b, c son números naturales cualesquiera se cumple que:

(a • b) • c = a • (b • c)

Por ejemplo:

(3 • 5) • 2 = 15 • 2 = 30

3 • (5 • 2) = 3 • 10 = 30

Los resultados coinciden, es decir,

(3 • 5) • 2 = 3 • (5 • 2)

2.- Conmutativa

Si a, b son números naturales cualesquiera se cumple que:

a • b = b • a

Por ejemplo:

5 • 8 = 8 • 5 = 40

3.-Elemento neutro

El 1 es el elemento neutro de la multiplicación porque, cualquiera que sea el número natural a, se cumple que:

a • 1 = a

4.- Distributiva del producto respecto de la suma

Si a, b, c son números naturales cualesquiera se cumple que:

a • (b + c) = a • b + a • c

Por ejemplo:

5 • (3 + 8) = 5 • 11 = 55

5 • 3 + 5 • 8 = 15 + 40 = 55

Los resultados coinciden, es decir,

5 • (3 + 8) = 5 • 3 + 5 • 8

Propiedades de la Sustracción de Números Naturales

Igual que la suma la resta es una operación que se deriva de la operación de contar.

Si tenemos 6 ovejas y los lobos se comen 2 ovejas ¿cuantas ovejas tenemos?. Una forma de hacerlo sería volver a contar todas las ovejas, pero alguien que hubiese contado varias veces el mismo caso, recordaría el resultado y no necesitaría volver a contar las ovejas. Sabría que 6 - 2 = 4.

Los términos de la resta se llaman minuendo (las ovejas que tenemos) y sustraendo (las ovejas que se comieron los lobos).

Propiedades de la resta:

La resta no tiene la propiedad conmutativa (no es lo mismo a - b que b - a)

Propiedades de la División de Números Naturales

La división es la operación que tenemos que hacer para repartir un número de cosas entre un número de personas.

Los términos de la división se llaman dividendo (el número de cosas), divisor (el número de personas), cociente (el numero que le corresponde a cada persona) y resto (lo que sobra).

Si el resto es cero la división se llama exacta y en caso contrario inexacta.

Propiedades de la división

La división no tiene la propiedad conmutativa. No es lo mismo a/b que b/a.

Números Enteros:

Los números enteros son un conjunto de números que incluye a los números naturales distintos de cero (1, 2, 3, ...), los negativos de los números naturales (..., −3, −2, −1) y al 0. Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que todos los enteros positivos (1, 2, ...) y que el cero. Para resaltar la diferencia entre positivos y negativos, a veces también se escribe un signo «más» delante de los positivos: +1, +5, etc. Cuando no se le escribe signo al número se asume que es positivo. El conjunto de todos los números enteros se representa por la letra = {..., −3, −2, −1, 0, +1, +2, +3, ...}.

Al igual que los números naturales, los números enteros pueden sumarse, restarse, multiplicarse y dividirse, de forma similar a los primeros. Sin embargo, en el caso de los enteros es necesario calcular también el signo del resultado.

Los números enteros extienden la utilidad de los números naturales para contar cosas. Pueden utilizarse para contabilizar pérdidas: si en un colegio entran 80 alumnos nuevos de primer curso un cierto año, pero hay 100 alumnos de último curso que pasaron a educación secundaria, en total habrá 100 − 80 = 20 alumnos menos; pero también puede decirse que dicho número ha aumentado en 80 − 100 = −20 alumnos.

También hay ciertas magnitudes, como la temperatura o la altura

...

Descargar como (para miembros actualizados) txt (21 Kb)
Leer 13 páginas más »
Disponible sólo en Clubensayos.com