Numeros Indices
Enviado por chiojmz • 14 de Octubre de 2012 • 1.091 Palabras (5 Páginas) • 581 Visitas
Numero índice.
En general diremos que un número índice es aquella medida estadística que permite estudiar las fluctuaciones o variaciones de una sola magnitud o de más de una en relación al tiempo o al espacio. Los índices más habituales son los que realizan las comparaciones en el tiempo, por lo que, como veremos más adelante, los números índices son en realidad series temporales.
Como puede verse, este nuevo concepto que acaba de introducirse, es muy parecido al de tasa de variación que se estudió en el capitulo anterior.
Podemos definir un numero índice como una medida estadística(o indicador) de la variación de una magnitud a lo largo del tiempo(o en el espacio) con respecto a un momento dado del mismo(o punto de referencia) que se toma como base.
Habitualmente estudiaremos la evolución de magnitudes en el tiempo. Así la situación inicial la llamaremos periodo base o de referencia y a la situación que queremos comparar periodo actual.
Si la comparación se realiza para los valores de una sola magnitud, hablaremos de índices simples. En cambio, cuando se trabaja con más de una magnitud a la vez, hablaremos de índices complejos. En cualquiera de los dos casos vamos a comparar siempre dos situaciones, una de las cuales se considera de referencia. A la situación inicial, cuando las comparaciones son temporales, se le conoce como periodo base o referencia, frente al periodo corriente o actual con el que se realiza la comparación.
Número índice simple.
Los números índices simples se refieren a una sola variable y sirven como expresión alternativa al valor en unidades cuando se pretende destacar diferencias entre periodos ó regiones. Un índice de valor simple (it) se calcula de dos maneras equivalentes:
1.- dividiendo cada valor de la serie temporal (vt) por la correspondiente a un periodo que se considera como base ó de referencia (v0), multiplicando por 100 el resultado. Es decir,
It=Vt/Vo 100
2.- sumando(o restando) a 100 la tasa (r) de crecimiento(o decrecimiento) entre una valor de la serie (vt) y el que se toma como base (v0). Es decir,
It = 100 + r si r > 0
It = 100 - r si r < 0
En ocasiones, los índices de valor simple han de calcularse como promedio de los índices de valor simples estudiados hasta ahora. Los índices pueden ser construidos para infinidad de magnitudes económicas. Precios, volumen, exportaciones, valores bursátiles, etc.
Ejemplo 1: si una cartera de valores presenta los siguientes valores en tres años consecutivos (en miles de euros): 16.000(v1), 16.200(v2), 16.250(v3), calcular los índices de valor de la cartera y el índice de valor medio simple para el periodo de tres años.
Tomando como año base el primer año (v0=v1), los índices de valor serian 100(i1) para el primer año, 101,7(i2) para el segundo año y 102,1(i3) para el tercero.
Si tomamos como base el año 2(v0=v2), los índices para los tres años serian 98,4(i1) para el primero, 100(i2) para el segundo y 100,4(i3) para el tercero.
El índice de valor medio para los tres años será la media geométrica (101,263).
Números índice complejos.
Los números índices complejos
...