Practica Calculo
Enviado por melissa_31 • 1 de Mayo de 2013 • 8.681 Palabras (35 Páginas) • 346 Visitas
FORMULA 1
Y=13
dy = d(13)
dx dx
dy = 0
dx
Y= 6c2
dy = d(6c2)
dx dx
dy = 0
dx
Y= 9x
dy = d(9x)
dx dx
dy = 0
dx
Y= c
dy = d(c)
dx dx
dy = 0
dx
Y= 3
dy = d(3)
dx dx
dy = 0
dx
FORMULA 2
Y= x
dy = d(x)
dx dx
dy = 1
dx
Y= 6x
dy = d(6x)
dx dx
dy = 6dx
dx dx
dy = 6(1)
dx
dy = 6
dx
Y= Bx+x
dy = d(Bx+x)
dx dx
dy = Bdx + dx
dx dx dx
dy = B (1) +1
dx
dy = B+1
dx
Y= x+x
dy = d(x+x)
dx dx
dy = dx + dx
dx dx dx
dy = 1+1
dx
dy = 2
dx
Y= 8x
dy = d(8x)
dx dx
dy = 8dx
dx dx
dy = 8(1)
dx
dy = 8
d
FORMULA 3
Y= 2a+ab+7b
dy = d( 2a+ab+7b)
dx dx
dy = d(2a)+ d(ab) + d(7b)
dx dx dx dx
dy = 0+0+0
dx
dy = 0
dx
Y=c+x+9
dy=d(c+x+9)
dx dx
dy=d(c)+dx+d(9)
dx dx dx dx
dy=0+1+0
dx
dy=1
dx
Y= 10b+bc+a2
dy = d(10b+bc+a2)
dx dx
d
y = d(10b)+ d(bc) + d(a2)
dx dx dx dx
dy = 0+0+0
dx
dy = 0
d
Y= 8x+10x+x+b
dy = d(6x+3x+x+b)
dx dx
dy = d(6x)+ d(3x) + d(x) + d(b)
dx dx dx dx dx
dy = 6dx+ 3dx + dx + db
dx dx dx dx dx
dy = 6(1)+3(1)+1+0
dx
dy = 6+3+1+0
dx
dy = 10
dx
Y=x+x+x
dy=d(x+x+x)
dx dx
dy= dx + dx+dx
dx dx dx dx
dy=1+1+1
dx
dy= 3
dx
FORMULA 4
Y= 4x
dy = d(4x)
dx dx
dy = 4dx
dx dx
dy = 4(1)
dx
dy = 4
dx
Y= 21x
dy = d(21x)
dx dx
dy = 21dx
dx dx
dy = 21(1)
dx
dy = 21
dx
Y= 2x
dy = d(2x)
dx dx
dy = 2dx
dx dx
dy = 2(1)
dx
dy = 2
dx
Y= 8x
dy = d(8x)
dx dx
dy = 8dx
dx dx
dy = 8(1)
dx
dy = 8
dx
Y= 5x
dy = d(5x)
dx dx
dy = 5dx
dx dx
dy = 5(1)
dx
dy = 5
dx
FORMULa
Y= x =x √a-bx
√a-bx
y = x (a-bx) 1/2
dy = x d(a-bx)1/2 + (a-bx)1/2 d(x)
dx dx dx
dy = x 1 (a-bx)-1/2 d(a-bx) + (a-bx)1/2
dx 2 dx
dy = x 1 (a-bx)-1/2 d(a) – d(bx) + (a-bx)1/2
dx 2 dx dx
dy = x 1 (a-bx)-1/2 bdx + (a-bx)1/2
dx 2 dx
dy = x 1 (a-bx)-1/2 (- b) + (a-bx)1/2
dx 2
dy = -bx) + √a-bx
dx 2√a-bx
• Y= (x+2)√x2+2
y = (x+2)(x2+2)1/2
dy = (x+2)d(x2+2)1/2 + (x2+2)1/2 d (x+2)
dx dx dx
dy = (x+2)1(x2+2)-1/2 d (x2+2)+ (x2+2)1/2 d(x) + d(2)
dx 2 dx dx dx
dy = 1 (x+2)(x2+2)-1/2 d (x2) + d(2)+ (x2+2)1/2 (1)
dx 2 dx dx
dy = 1 (x+2)(x2+2)-1/2 (2x) + (x2+2)1/2
dx 2
dy = 2x(x+2) + √x2+2
dx 2(x2+2)-1/2
dy = x(x+2) + √x2+2
dx √x2+2
Y= (3x2+2)√1+5x2
y = (3x2+2) (1+5x2) 1/2
dy = (3x2+2) d (1+5x2) ½ + (1+5x2) ½ d(3x2+2)
dx dx dx
dy = (3x2+2) 1 (1+5x2)- ½ d (1+5x2)+ (1+5x2)½ d(3x2 )+ d(2) dx 2 dx dx dx
dy = (3x2+2) 1 (1+5x2)- ½ d (1)+ d(5x2)+ (1+5x2)½ 2(3x2-1 ) dx 2 dx dx
dy = (3x2+2) 1 (1+5x2)- ½ + 2(5x2)+ (1+5x2)½ 6x dx 2
dy = (3x2+2) 1 (1+5x2)- ½ + 10x+ (1+5x2)½ 6x dx 2
dy = 5x(3x2+2) (1+5x2)- ½ + (1+5x2)½ 6x
dx
dy = 5x(3x2+2) + 6x √1+5x2
...