Teorema De Bayes
Enviado por nancyvaleria • 23 de Abril de 2015 • 860 Palabras (4 Páginas) • 381 Visitas
Teorema de Bayes
Las probabilidades p(A1) se denominan probabilidades a priori.
Las probabilidades p(Ai/B) se denominan probabilidades a posteriori.
Las probabilidades p(B/Ai) se denominan verosimilitudes.
Ejemplos:
1El 20% de los empleados de una empresa son ingenieros y otro 20% son economistas. El 75% de los ingenieros ocupan un puesto directivo y el 50% de los economistas también, mientras que los no ingenieros y los no economistas solamente el 20% ocupa un puesto directivo. ¿Cuál es la probabilidad de que un empleado directivo elegido al azar sea ingeniero?
2. La probabilidad de que haya un accidente en una fábrica que dispone de alarma es 0.1. La probabilidad de que suene esta sí se ha producido algún incidente es de 0.97 y la probabilidad de que suene si no ha sucedido ningún incidente es 0.02.
En el supuesto de que haya funcionado la alarma, ¿cuál es la probabilidad de que no haya habido ningún incidente?
Sean los sucesos:
I = Producirse incidente.
A = Sonar la alarma.
Ejemplos
En cierta planta de montaje, tres máquinas B B B , montan 30%, 45% y 25% de los productos, respectivamente. Se sabe de la experiencia pasada que 2%, 3%, y 2% de los productos ensamblados por cada máquina, respectivamente, tiene defectos. Ahora, suponga que se selecciona de forma aleatoria un producto terminado y se encuentra que es defectuoso, ¿ cuál es la probabilidad de que esté ensamblado por la máquina B ?
Solución:
Considere los eventos siguientes:
A: el producto está defectuoso,
B : el producto está ensamblado por la máquina B .
B : el producto está ensamblado por la máquina B .
B : el producto está ensamblado por la máquina B .
Al aplicar el teorema, podemos escribir:
De los datos del problema sabemos que:
Entonces:
Así, al seleccionar de forma aleatoria un producto terminado y encontrar que es defectuoso, la probabilidad de que esté haya sido ensamblado por la máquina B es del 20%.
EJEMPLO 1
En la sala de pediatría de un hospital, el 60% de los pacientes son niñas. De los niños el 35% son menores de 24 meses. El 20% de las niñas tienen menos de 24 meses. Un pediatra que ingresa a la sala selecciona un infante al azar.
a. Determine el valor de la probabilidad de que sea menor de 24 meses.
b. Si el infante resulta ser menor de 24 meses. Determine la probabilidad que sea una niña.
SOLUCIÓN:
Se definen los sucesos:
Suceso H: seleccionar una niña.
Suceso V: seleccionar un niño.
Suceso M: infante menor de 24 meses.
En los ejercicios de probabilidad
...