ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teorema De Tales


Enviado por   •  26 de Agosto de 2013  •  539 Palabras (3 Páginas)  •  217 Visitas

Página 1 de 3

TEOREMA DE TALES

El primero de ellos explica esencialmente una forma de construir un triángulo semejante a uno previamente existente (los triángulos semejantes son los que tienen iguales ángulos). Mientras que el segundo desentraña una propiedad esencial de los circuncentros de todos los triángulos rectángulos (encontrándose éstos en el punto medio de su hipotenusa), que a su vez en la construcción geométrica es ampliamente utilizado para imponer condiciones de construcción de ángulos rectos. Si tres o más rectas paralelas son intersecadas cada una por dos transversales, los segmentos de las transversales determinados por las paralelas, son proporcionales.

Como definición previa al enunciado del teorema, es necesario establecer que dos triángulos son semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre sí. El primer teorema de Tales recoge uno de los resultados más básicos de la geometría, al saber, que:

Teorema primero

“Si por un triángulo se traza una línea paralela a cualquiera de sus lados, se obtienen dos triángulos semejantes”.

Como definición previa al enunciado del teorema, es necesario establecer que dos triángulos son semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre sí. El primer teorema de Tales recoge uno de los resultados más básicos de la geometría, al saber, que:

Según parece, Tales descubrió el teorema mientras investigaba la condición de paralelismo entre dos rectas. De hecho, el primer teorema de Tales puede enunciarse como que la igualdad de los cocientes de los lados de dos triángulos no es condición suficiente de paralelismo. Sin embargo, la principal aplicación del teorema, y la razón de su fama, se deriva del establecimiento de la condición de semejanza de triángulos.

Corolario

Del establecimiento de la existencia de una relación de semejanza entre ambos triángulos se deduce la necesaria proporcionalidad entre sus lados. Ello significa que la razón entre la longitud de dos de ellos en un triángulo se mantiene constante en el otro.

Por ejemplo, en la figura se observan dos triángulos que, en virtud del teorema de Thales, son semejantes. Entonces, del mismo se deduce a modo de corolario que el cociente entre los lados A y B del triángulo pequeño es el mismo que el cociente entre los lados D y C en el triángulo grande. Esto es, que como por el teorema de Tales ambos triángulos son semejantes, se cumple que:

Este corolario es la base de la geometría descriptiva. Su utilidad es evidente; según Heródoto, el propio Thales empleó el corolario de su teorema para medir la altura de la pirámide de Keops en Egipto. En cualquier caso, el teorema demuestra la semejanza entre dos triángulos, no la constancia del cociente.

Del primer teorema de Thales se deduce además lo siguiente (realmente

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com