Logica Matematica
Enviado por rosyjuare • 5 de Septiembre de 2011 • 1.977 Palabras (8 Páginas) • 1.497 Visitas
INTELIGENCIA ARTIFICIAL
Enviado por merlynck
Partes: 1, 2
2.3.Nociones y antecedentes históricos de Inteligencia Artificial.
4.Características de la Inteligencia Artificial.
5.Objetivos de la Investigación en Inteligencia Artificial.
6.Símbolos vs. Métodos numéricos.
7.Algoritmos.
8.Base de conocimiento. Sistemas basados en conocimiento.
9.Motor de inferencia.
10.Sistemas expertos como Sistemas de Información orientados al Servicio.
11.Robótica.
12.Perspectivas futuras.
13.Conclusiones.
14.Bibliografía.
Introducción.
La Inteligencia Artificial comenzó como el resultado de la investigación en psicología cognitiva y lógica matemática. Se ha enfocado sobre la explicación del trabajo mental y construcción de algoritmos de solución a problemas de propósito general. Punto de vista que favorece la abstracción y la generalidad.
La Inteligencia Artificial es una combinación de la ciencia del computador, fisiología y filosofía, tan general y amplio como eso, es que reúne varios campos (robótica, sistemas expertos, por ejemplo), todos los cuales tienen en común la creación de máquinas que pueden "pensar".
La idea de construir una máquina que pueda ejecutar tareas percibidas como requerimientos de inteligencia humana es un atractivo. Las tareas que han sido estudiadas desde este punto de vista incluyen juegos, traducción de idiomas, comprensión de idiomas, diagnóstico de fallas, robótica, suministro de asesoría experta en diversos temas.
Es así como los sistemas de administración de base de datos cada vez más sofisticados, la estructura de datos y el desarrollo de algoritmos de inserción, borrado y locación de datos, así como el intento de crear máquinas capaces de realizar tareas que son pensadas como típicas del ámbito de la inteligencia humana, acuñaron el término Inteligencia Artificial en 1956.
Trabajos teóricos fundamentales fueron el desarrollo de algoritmos matemáticos por Warren McCullock y Walter Pitts, en 1943, necesarios para posibilitar el trabajo de clasificación, o funcionamiento en sentido general, de una red neuronal. En 1949 Donald Hebb desarrolló un algoritmo de aprendizaje para dichas redes neuronales creando, en conjunto con los trabajos de McCullock y Pitts, la escuela creacionista. Esta escuela se considera hoy como el origen de la Inteligencia Artificial, sin embargo se trató poco por muchos años, dando paso al razonamiento simbólico basado en reglas de producción, lo que se conoce como sistemas expertos.
I. Nociones y Antecedentes Históricos de Inteligencia Artificial.
Definiciones sobre Inteligencia Artificial:
•Disciplina científico-técnica que trata de crear sistemas artificiales capaces de comportamientos que, de ser realizados por seres humanos, se diría que requieren inteligencia.
•Estudio de los mecanismos de la inteligencia y las tecnologías que lo sustentan. (Newell, 91)
•Intento de reproducir (modelar) la manera en que las personas identifican, estructuran y resuelven problemas difíciles (Pople, 84)
•Son ciertas herramientas de programación, entendiendo por herramientas:
◦Lenguajes: LISP, PROLOG
◦Entornos de desarrollo: shells
◦Arquitecturas de alto nivel: nodo y arco, sistemas de producciones
Desde sus comienzos hasta la actualidad, la Inteligencia Artificial ha tenido que hacer frente a una serie de problemas:
•Los computadores no pueden manejar (no contienen) verdaderos significados.
•Los computadores no tienen autoconciencia (emociones, sociabilidad, etc.).
•Un computador sólo puede hacer aquello para lo que está programado.
•Las máquinas no pueden pensar realmente.
En 1843, Lady Ada Augusta Byron, patrocinadora de Charles Babbage planteó el asunto de si la máquina de Babbage podía "pensar".
Los primeros problemas que se trató de resolver fueron puzzles, juegos de ajedrez, traducción de textos a otro idioma.
Durante la II Guerra Mundial Norbert Wiener y John Von Neumann establecieron los principios de la cibernética en relación con la realización de decisiones complejas y control de funciones en máquinas.
La teoría de la retroalimentación en mecanismos, como por ejemplo un termostato que regula la temperatura en una casa, tuvo mucha influencia. Esto aún no era propiamente Inteligencia Artificial. Se hizo mucho en traducciones (Andrew Booth y Warren Weaver), lo que sembró la semilla hacia el entendimiento del lenguaje natural.
En el año 1955 Herbert Simon, el físico Allen Newell y J.C. Shaw, programador de la RAND Corp. y compañero de Newell, desarrolla el primer lenguaje de programación orientado a la resolución de problemas de la Inteligencia Artificial, el IPL-11. Un año más tarde estos tres científicos desarrollan el primer programa de Inteligencia Artificial al que llamaron Logic Theorist, el cual era capaz de demostrar teoremas matemáticos, representando cada problema como un modelo de árbol, en el que se seguían ramas en busca de la solución correcta, que resultó crucial. Este programa demostró 38 de los 52 teoremas del segundo capítulo de Principia Mathematica de Russel y Whitehead.
En 1956, con la ahora famosa conferencia de Dartmouth, organizada por John McCarthy y en la cual se utilizó el nombre de inteligencia artificial para este nuevo campo, se separó la Inteligencia Artificial de la ciencia del computador, como tal. Se estableció como conclusión fundamental la posibilidad de simular inteligencia humana en una máquina.
En 1957 Newell y Simon continúan su trabajo con el desarrollo del General Problems Solver (GPS). GPS era un sistema orientado a la resolución de problemas; a diferencia del Logic Theorist, el cual se orientó a la demostración de teoremas matemáticos, GPS no estaba programado para resolver problemas de un determinado tipo, razón a la cual debe su nombre. Resuelve una gran cantidad de problemas de sentido común, como una extensión del principio de retroalimentación de Wiener.
Diversos centros de investigación se establecieron, entre los más relevantes están, la Universidad Carnegie Mellon, el Massachusetts Institute of Technologie (MIT), encabezado por Marvin Minsky, la Universidad de Standford e IBM. Los temas fundamentales eran el desarrollo de heurísticas y el aprendizaje de máquinas.
En 1957 McCarthy desarrolló el lenguaje LISP. La IBM contrató un equipo para la investigación en esa área y el
...