ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Distribucion Binomial


Enviado por   •  30 de Marzo de 2015  •  407 Palabras (2 Páginas)  •  196 Visitas

Página 1 de 2

DISTRIBUCIÓN BINOMIAL

La distribución Binomial es un caso particular de probabilidad de variable aleatoria discreta, y por sus aplicaciones, es posiblemente la más importante.

Esta distribución corresponde a la realización de un experimento aleatorio que cumple con las siguientes condiciones:

* Al realizar el experimento sólo son posible dos resultados: el suceso A, llamado éxito, o su contrario A’, llamado fracaso.

* Al repetir el experimento, el resultado obtenido es independiente de los resultados obtenidos anteriormente.

* La probabilidad del suceso A es constante, es decir, no varía de una prueba del experimento a otra. Si llamamos p a la probabilidad de A, p(A) = P, entonces p(A’) = 1 – p = q

* En cada experimento se realizan n pruebas idénticas.

Todo experimento que tenga estas características se dice que sigue el modelo de la distribución Binomial o distribución de Bernoulli.

En general, si se tienen n ensayos Bernoulli con probabilidad de éxito p y de fracaso q, entonces la distribución de probabilidad que la modela es la distribución de probabilidad binomial y su regla de correspondencia es:

DISTRIBUCIÓN DE POISSON

La distribución de POISSON es también un caso particular de probabilidad de variable aleatoria discreta, el cual debe su nombre a Siméon Denis Poisson (1781-1840), un francés que la desarrolló a partir de los estudios que realizó durante la última etapa de su vida.

Esta distribución se utiliza para describir ciertos procesos.

p(X) = probabilidad de que ocurran x éxitos, cuando el número promedio de ocurrencia de ellos es l.

l = media o promedio de éxitos por unidad de tiempo, área o producto

e = 2.718 (base de logaritmo neperiano o natural)

X = variable que nos denota el número de éxitos que se desea que ocurra

DISTRIBUCIÓN NORMAL

La distribución normal es también un caso particular de probabilidad de variable aleatoria contínua, fue reconocida por primera vez por el francés Abraham de Moivre (1667-1754). Posteriormente, Carl Friedrich Gauss (1777-1855) elaboró desarrollos más profundos y formuló la ecuación de la curva; de ahí que también se le conozca, más comúnmente, como la "campana de Gauss". La distribución de una variable normal está completamente determinada por dos parámetros, su media (µ) y su desviación estándar (σ). Con esta notación, la densidad de la normal viene dada por la ecuación:

Estadística para Administradores. Sexta Edición. Richard I. Levin & David S. Rubin. Editorial Prentice Hall. Capítulo 5 Probabilidad II: Distribuciones, pp.232 – 264

Distribución Binomial (información tomada de www.wikipedia.com, http://es.wikipedia.org/wiki/Distribuci%C3%B3n_binomial)

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com