DISTRIBUCIÓN BINOMIAL
Enviado por Vicsr • 22 de Septiembre de 2014 • 786 Palabras (4 Páginas) • 224 Visitas
DISTRIBUCIÓN BINOMIAL
La distribución binomial se suele representar por B(n, p).
n es el número de pruebas de que consta el experimento.
p es la probabilidad de éxito.
En estadística, la distribución binomial es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.
Para representar que una variable aleatoria X sigue una distribución binomial de parámetros n y p, se escribe:
Su función de probabilidad es
donde
siendo las combinaciones de en ( elementos tomados de en )
Si tiende a infinito y es tal que el producto entre ambos parámetros tiende a , entonces la distribución de la variable aleatoria binomial tiende a una distribución de Poisson de parámetro .
Por último, se cumple que cuando =0.5 y n es muy grande (usualmente se exige que ) la distribución binomial puede aproximarse mediante la distribución normal.
Media
Varianza
Desviación típica
DISTRIBUCIÓN DE POISSON
En teoría de probabilidad y estadística, la distribución de Poisson es una distribución de probabilidaddiscreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad de que ocurra un determinado número de eventos durante cierto período de tiempo. Concretamente, se especializa en la probabilidad de ocurrencia de sucesos con probabilidades muy pequeñas, o sucesos "raros".
La función de masa o probabilidad de la distribución de Poisson es
Donde:
• k es el número de ocurrencias del evento o fenómeno (la función nos da la probabilidad de que el evento suceda precisamente k veces).
• λ es un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo dado. Por ejemplo, si el suceso estudiado tiene lugar en promedio 4 veces por minuto y estamos interesados en la probabilidad de que ocurra k veces dentro de un intervalo de 10 minutos, usaremos un modelo de distribución de Poisson con λ = 10×4 = 40.
• e es la base de los logaritmos naturales (e = 2,71828...)
Tanto el valor esperado como la varianza de una variable aleatoria con distribución
...