Ejercicios en la definición de la fuerza
Enviado por juanCol • 7 de Agosto de 2012 • Examen • 1.426 Palabras (6 Páginas) • 1.083 Visitas
Ejercicio C-1
Determinar la fuerza que actúa sobre las cargas eléctricas q1 = + 1 x 10-6 C. y q2 = + 2,5 x 10-6 C. que se encuentran en reposo y en el vacío a una distancia de 5 cm.
Para calcular la fuerza de interacción entre dos cargas eléctricas puntuales en reposo recurriremos a la ley de Coulomb por lo tanto previo transformar todas las magnitudes en juego a unidades del sistema internacional de medidas nos queda que:
Respuesta:
La fuerza de repulsión tiene un módulo de 9 N. pero debemos indicar además en un esquema gráfico las demás características del vector tal como se indica en el gráfico.
Ejercicio C-2
Determinar la fuerza que actúa sobre las cargas eléctricas q1 = -1,25 x 10-9 C. y q2 = +2 x 10-5 C. que se encuentran en reposo y en el vacío a una distancia de 10 cm.
Como la respuesta obtenida es de signo negativo nos está indicando que la fuerza es de atracción.
Respuesta: La fuerza de atracción tiene un módulo de 2,25 x 10-2 N. pero debemos indicar además en un esquema gráfico las demás características del vector lo que sería así:
Ejercicio C3
EJERCICIO C4
Ley de Coulomb Ejercicios Resueltos
La siguiente figura muestra tres partículas cargadas:
¿Qué fuerza electrostática, debida a las otras dos cargas, actúa sobre q1?
Considere que:
q1= -1.2 μC
q2= 3.7 μC
q3= -2.7 μC
r12= 15 cm
r13= 10 cm
θ= 32°
Recordemos que μ (micro) significa 10 elevado a la menos 6
o sea que -1.2 μC es igual a -1.2x10^-6 C
Por la Ley de Coulomb sabemos que la fuerza que va a ejercer la carga q2 sobre q1 es igual a:
F12= K (q1q2)/(r12)²
donde la constante k= 9x10⁹ Nm²/C²
F12= 1.776 N
Ahora calculamos la fuerza que ejerce la carga q3 sobre la carga q1:
F13= K(q1q3)/r13
F13= 2.484 N
Nota: Al realizar los cálculos de la fuerza, no tomamos en cuenta el signo de las cargas, ya que por ahora sólo nos interesa la magnitud de dicha fuerza.
Ahora vamos a descomponer los vectores obtenidos (F12 y F13) en sus correspondientes componentes rectangulares:
La componente en x de F12 es igual a la magnitud de la fuerza que obtuvimos anteriormente, es decir Fx12= 1.77 N
Y la componente F13x= F13 sen 32°
Fx= Fx12 + Fx13= 3.09 N
Ahora obtenemos las componentes en Y:
Fy= F12y + F 13y
La componente en y de F12= 0
Fy= 0 + (-F13 cos 32°)
Fy= -2.10 N
la fuerza resulta negativa porque la carga q1 y q3 tienen el mismo signo
por lo tanto se repelen.
La fuerza total ejercida por las cargas q2 y q3 sobre q1 se obtiene:
F= √(3.09²)+(- 2.10²)
F= 3.74 N
Jercico c5
s fuerzas que se ejercen entre dos cargas eléctricas son directamente proporcional a sus cantidades de electricidad e inversamente proporcionales al cuadrado de la distancia que las separa".
F=(k)qq1/r2
k = 9 x 109 Nm2/C2
q q1 = cargas del electrón (C)
r2 = distancia al cuadrado (m2)
F = fuerza (N)
Carga Electrica
EJEMPLO DE APLICACIÓN DE LEY DE COULOMB
Se tienen dos esferas cargadas eléctricamente con 4x10-8 C y 2.3x10-7 C respectivamente y están separadas 35 cm en el aire. Calcular la fuerza eléctrica de atracción entre ellas.
F =( k)qq1/r2
F= 9 x 109 Nm2/C2 (4x10-8 C )(2.3x10-7C)/(0.35 m)2
F = 6.85375x10-2 N
Campo eléctrico
Campo eléctrico: Se denomina al espacio que forma un cuerpo cargado eléctricamente.
Campo producido por una carga puntual: Se denomina al espacio donde una carga que pueda imaginarse concentrada en un punto produzca un campo eléctrico.
Líneas de fuerza: Son aquellas líneas trazadas en un campo eléctrico de una ¿rea cargada eléctricamente de tal modo que sean tangentes a ella en cada punto. Cabe destacar las siguientes propiedades de las líneas de fuerza:
No hay línea de fuerza que empiece o termine en el espacio que rodea las cargas.
Todas las líneas de fuerza divergen radialmente a partir de las cargas positivas, mientras que convergen radialmente hacia las cargas negativas.
Las líneas de fuerza nunca se cruzan.
Intensidad del campo eléctrico: Es igual al cociente de dividirla fuerza (F) que recibe la carga de prueba entre su valor (q2), cuando la carga de prueba se coloca en el punto considerado.
F=N
q2=C
E=N/C
k=9x109 Nm2/C2
r=m
E=F/q2=(k)q2/r2
...