Factor comun monomio,trinomio
Enviado por Rosauri Taveras Hilario • 6 de Febrero de 2017 • Informe • 2.437 Palabras (10 Páginas) • 352 Visitas
Presentación
Nombre:
Nathalia
Apellido:
Martes
Numero:
30
Curso:
3ro B
Profesor:
Carlos Vargas
Instituto:
Liceo Matutino Benito Juárez
Materia:
Matemática
Tema:
Factor Común
Factor Común Monomio.
PROCEDIMIENTO.
1) Se encuentra un factor que divida a ambos monomios.
2) Se encuentra el factor común de las letras, que es el de menor exponente que divida a los monomios.
3) Si los coeficientes no tienen un factor común, pero si un factor común las letras, se copian dentro del paréntesis, los mismo coeficientes.
4) Si las letras no tienen un factor común, pero si hay factor común de los coeficientes, se copian dentro del paréntesis las mismas letras.
Ejemplos.
a) Descomponer en factores a^2 +2a = a(a +2)
En este caso se encuentra el factor común de los monomios a^2 y 2a; y este es“a”; luego se escribe entre paréntesis los factores (a) y (2 ) que multiplicados por el factor común (a), den como resultado los monomios dados originalmente.
–> Factor común: a porque a(a) = a^2 y a(2) = 2a
–> la solución es: a(a +2)
b) Descomponer en factores 10b -30ab^2 = 10b(1 -3ab)
En este caso se encuentra el factor común de los monomios 10b y 30ab^2; y este es “10b“; y luego se escribe entre paréntesis los factores (1) y (-3ab) que multiplicados por el factor común (10b), den como resultado los monomios dados originalmente.
–> Factor común : 10b porque 10b(1) = 10b y 10b(-3ab ) = –30ab^2
–> la solución es: 10b(1 -3ab)[pic 1]
Factor común por agrupación de Términos.
PROCEDIMIENTO.
1) Consiste en agrupar entre paréntesis los términos que tienen factor común,
separados los grupos por el signo del primer término de cada grupo.
2) La agrupación puede hacerse generalmente de más de un modo con tal que
los dos términos que se agrupen tengan algún factor común, y siempre que las
cantidades que quedan dentro del paréntesis después de sacar el factor común
en cada grupo, sean exactamente iguales.
3) Después de lo anterior se utiliza el procedimiento del caso I, Factor Común
Polinomio.
Ejemplos:
a) ax +bx +ay +by = (a+b)(x+y)
1º) Agrupar términos que tienen factor común: (ax+bx) + (ay+by)
2º) Factorando por el factor común: x(a+b) + y(a+b)
3º) Formando factores: uno con los términos con factor común y otros con los términos no comunes (a+b)(x+y), que es la solución.
b) 3m^2 -6mn +4m -8n = (m-2n)(3m+4)
1º) Agrupando términos que tiene factor común: (3m^2 -6mn)+(4m-8n)
2º) Factorar por el factor común: 3m(m-2n) + 4(m-2n)
3º) Formando factores: (m-2n)(3m+4) <– Solución.
[pic 2]
TRINOMIO CUADRADO PERFECTO
EJEMPLO 1: (Términos positivos)
x2 + 6x + 9 = (x + 3)2
x 3
2.3.x
6x
Busco dos términos que sean "cuadrado" de algo. Son: x2 y 9. Entonces "bajo" la x y el 3 (las bases). Luego verifico 2.x.3 = 6x ("doble producto del primero por el segundo"). Dió igual que el otro término. El polinomio es un cuadrado "perfecto". El resultado de la factorización es la suma de las bases elevada al cuadrado: (x + 3)2
EJEMPLO 2: (Con el "1")
x2 + 2x + 1 = (x + 1)2
x 1
2.1.x
2x
Recordemos que el "1" es cuadrado (de "1" y "-1"). Las bases son: x y 1.
La verificación de que es "perfecto" es 2.x.1 = 2x.
El resultado es (x + 1)2
EJEMPLO 3: (Con fracciones)
x2 + 8/3 x + 16/9 = (x + 4/3)2
x 4/3
2. 4/3 . x
8/3 x
La fracción 16/9 es cuadrado de 4/3. Las bases son x y 4/3.[pic 3]
DIFERENCIA DE CUADRADOS
EJEMPLO 1: (Fácil)
x2 - 9 = (x + 3).(x - 3)
x 3
Los dos términos son cuadrados. Las "bases" son x y 3. Se factoriza multiplicando la "suma de las bases" por la "resta de las bases".
EJEMPLO 2: (Con dos letras)
x2 - y2 = (x + y).(x - y)
x y
Las dos bases son letras
EJEMPLO 3: (Con el "1")
b2 - 1 = (b + 1).(b - 1)
b 1
No hay que olvidar que el número 1 es un cuadrado.
[pic 4]
TRINOMIO CUADRADO PERFECTO POR ADICIÓN Y SUSTRACCIÓN
Existen algunos trinomios, en los cuales su primer y tercer términos son cuadrados perfectos (tienen raíz cuadrada exacta), pero su segundo términos no es el doble producto de sus raíces cuadradas. x2 + 2x + 9, no es un trinomio cuadrado perfecto. Para que un trinomio de estos se convierta en un trinomio cuadrado perfecto, se debe sumar y restar un mismo número (semejante al segundo término) para que el segundo término sea el doble producto de las raíces cuadradas del primer y último término. A este proceso se le denomina completar cuadrados. |
[pic 5]
...