ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

POBLEMAS DEPARTAMENTALES DE MATEMÁTICAS

JasJas18Trabajo9 de Marzo de 2022

1.553 Palabras (7 Páginas)190 Visitas

Página 1 de 7

[pic 1]

 

 

DIVISIÓN CIENCIAS DE LA SALUD

 

LICENCIATURA:

Medicina

 

ASIGNATURA:

Matemáticas

 

COMPILADO DE PROBLEMAS DEPARTAMENTALES

 

NOMBRE DEL DOCENTE:

Carlos Eduardo Uc May

 

ESTUDIANTES:

Cristty Jasmin Garcia Rodriguez

Julieta Mariam Ramirez Gomez

 

MATRÍCULA:

2230569

 

Playa del Carmen Quintana Roo a 01 de Marzo del 2022

[pic 2]

| Periodo: Primavera 2022 |

Matemáticas Generales AG-109

Compilado de Problemas Departamentales:

Probabilidad y Estadístca

  1. (OTÑ17) Te presentan dos dados viejos y medio borrados que tienen los siguientes  números: el primero con 1,1,2,2,5,6; y el otro con, 1,2,3,3,5,5. Te proponen un juego en  el que se lanzarán los dados tres veces consecutivas, y se debe adivinar cuánto será la  suma de los resultados de los dos dados para cada tiro. ¿Por qué número te conviene  apostar y qué probabilidad tienes de ganar?

R=  Conviene apostar por los números 4 y 7, cada uno tiene una probabilidad de 6/36 y en conjunto tienen una probabilidad de ⅓.

2= 2

3= 4

4= 6

5= 4

6= 5

7= 6

8= 2

9= 3

10= 2

11= 2

TOTAL DE DATOS = 36

6/36 + 6/36 = 12/36 = 1/3

 

DADO 2

DADO 1

 

1

2

3

3

5

5

1

2

3

4

4

6

6

1

2

3

4

4

6

6

2

3

4

5

5

7

7

2

3

4

5

5

7

7

5

6

7

8

8

10

10

6

7

9

9

9

11

11

  1. (PMV19) En una escuela donde asisten 500 alumnos (284 niños y 216 niñas), se  otorgará información acerca de la importancia en la alimentación durante la niñez. Si  se elige una niña al azar en la escuela para que sea la encargada de repartir folletos con la información anterior, ¿Cuál será la probabilidad de que la niña elegida presente  desnutrición? Se sabe por las entrevistas realizadas por el director que 92 niños y 42  niñas resultaron con desnutrición en la escuela. 

R= Sabemos que tenemos un total de 500 alumnos de los cuales 216 son niñas; de estas 216 niñas, 174 están sanas y 42 presentan desnutrición. Por lo que la probabilidad de que se elija a una niña al azar en la escuela es de 216/ 500 (0.432) pero de que se elija una niña al azar en la escuela que presenta desnutrición es de 42/216 (0.194…)

 

NIÑOS

NIÑAS

TOTAL

SANOS

192

174

366

DESNUTRICIÓN

92

42

134

TOTAL

284

216

500

  1. (PMV16) Completa la siguiente tabla de frecuencias de una investigación descriptiva  hecha en una muestra de 35 individuos (ver tabla 1).

Frecuencia

No. de frutas  consumidas

Frecuencia  absoluta

Frecuencia  relativa

absoluta  

acumulada

0

5

14%

5

1

1

3%

6

2

14

40.00%

20

3

8

23%

28

4 o más

7

20%

35

Totales

35

100%

  1. (OTÑ16) Un médico está leyendo el resumen estadístico resultado de un estudio que se realizó en una comunidad de Quintana Roo. Dentro de los resultados, se encuentra con  que la media aritmética de la edad de dicha población es 26 con una desviación típica  de 10 años. Al respecto:

a) Confirma o refuta la expresión del doctor: “Creo que las  personas tienen una edad entre 10 y 26 años, por lo que no hay personas de la tercera  edad”.

R= La media es de 26 y la desviación típica o también conocida como desviación estándar es de 10; por lo que si tomamos la media y le sumamos los 10 años obtenemos 36 que sería el límite superior y en caso contrario de una resta nos daría 16 como límite inferior. Por lo tanto la expresión del doctor es errónea debido a que él está tomando en consideración un valor que es poco común y se encuentra fuera de los límites de nuestra media respecto a su desviación el cual es la edad de 10 años.

b) Contesta: ¿Qué otra información se puede conocer de dicha población con  esos datos?  

R= Se puede conocer el límite superior, el límite inferior y el intervalo de los datos.

  1.  (PMV17) Con base en la gráfica que se te presenta; describe la población por medio de  su media aritmética y su mediana.

[pic 3]

MEDIA ARITMÉTICA=(17*7) + (18*15) + (19) + (21) + (22*2) + (23) / 27  = 496 / 27 = 18.3704

MEDIANA= 27/2 = 13.5 el valor 13.5 se encuentra en el 18 por lo que 18 será la mediana

R= En la gráfica se nos presenta una población de un total de 27 personas de las cuales su edad varía de 17 a 23 años, donde 17 es el dato mínimo y 23 el dato máximo. Podemos visualizar que la moda se localiza en la edad de 18 donde se encuentra la mayor parte de la población (15 personas de 27) y en base a los datos obtenidos podemos concluir que la población de está gráfica tiene una media de 18.3704 y una mediana de 18.

  1. (2017 S02) Resultado de una encuesta aplicada a los alumnos de la Universidad de  Quintana Roo, se obtuvo el dato de que el promedio de horas de estudio de dichos  alumnos es de 3 horas al día, con una desviación de 1 hora.

Promedio = Media aritmética

  • Media aritmética= 3 horas al día
  • Desviación estándar o típica= 1 hora

Límite superior= 3 +1 = 4

Límite inferior=  3 - 1 = 2

  1. ¿Cuál es la mayor cantidad de horas de estudio de los alumnos de la universidad?

R= La mayor cantidad de horas como lo indica el límite superior es de 4 hrs.

  1. ¿Qué información puedes  agregar, basándote en los datos anteriores?

R=

  • Cantidad mínima 2 hrs
  • Cantidad maxima 4 hrs
  • Media 3 horas
  • Desviación estándar de 1 hr

  1. (VRN18) En cierta población, los resultados de realizar un estudio estadístico sobre las alturas de sus pobladores son las siguientes: se tiene una mediana de 1.75m; dos modas, una de 1.55 y otra de 1.85, además de un rango de 0.60m. Gráfica la distribución de la  población con base en la información anterior.  
  • MODA 1= 1.55
  • MODA 2= 1.85
  • MEDIANA= 1.75
  • RANGO= 0.60 M (de 1.45 a 2.05)

[pic 4]

[pic 5]

  1. (OTÑ18) En una investigación sobre el gasto mensual en servicios de salud de  estudiantes de nivel superior, se obtuvieron los siguientes resultados: valor mínimo de  $0, valor máximo de $800, moda de $100, mediana $150, promedio de $250, desviación  estándar de $200 y desviación media de $190. Elabora una gráfica donde muestres  cómo podría ser la distribución de población con base en dichos resultados.
  • VALOR MÍNIMO= $0
  • VALOR MÁXIMO= $800
  • MODA= $100
  • MEDIANA= $150
  • PROMEDIO O MEDIA= $250
  • DESVIACIÓN ESTÁNDAR= $200
  • DESVIACIÓN MEDIA= $190.

[pic 6][pic 7]

[pic 8]

9. (PMV18) La industria tabacalera registró un aumento de 29.5 % en sus ventas en  México durante 2016, con un record de 2.6 mil millones de cajetillas. Esto podría  deberse principalmente, a que los jóvenes comienzan a fumar desde una edad más temprana y a las innovaciones como los cigarros saborizados. ¿Cuál es la media de las  ventas registradas en la gráfica? Determine la desviación estándar e interprete los  resultados.

...

Descargar como (para miembros actualizados) txt (10 Kb) pdf (558 Kb) docx (403 Kb)
Leer 6 páginas más »
Disponible sólo en Clubensayos.com