ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Productos Notables Y Factorización


Enviado por   •  24 de Noviembre de 2013  •  580 Palabras (3 Páginas)  •  730 Visitas

Página 1 de 3

Productos Notables Y Factorización

Son aquellos productos que se rigen por reglas fijas y cuyo resultado puede hallarse por simple inspección. Su denominados también "Identidades Algebraicas". Son aquellos productos cuyo desarrollo es clásico y por esto se le reconoce fácilmente. Las más importantes son :

Binomio de Suma al Cuadrado: El Cuadrado del primer Termino, más el Doble Producto del Primer por el segundo Termino, más el Cuadrado del Segundo Término.

( a + b )2 = a2 + 2ab + b2

Binomio Diferencia al Cuadrado:El Cuadrado del primer Término, menos el Doble Producto del Primer por el segundo Término, más el Cuadrado del Segundo Término.

( a - b )2 = a2 - 2ab + b2

Diferencia de Cuadrados: El Cuadrado del Primer Término menos El Cuadrado del Segundo Término.

( a + b ) ( a - b ) = a2 - b2

Producto de dos binomios que tienen un término común: El cuadrado del termino común, mas el producto de termino comun por la suma de los terminos no comúnes, mas el producto de los términos no comunes.

( x + a)(x + b) = x2 + ( a + b) x + ab

Binomio Suma al Cubo: El Cubo del Primer Término, más el triple producto del cuadrado del primer por el segundo Término, más el triple producto del primer por el cuadrado del segundo Término, más el cubo del segundo Término.

( a + b )3 = a3 + 3 a2b + 3 ab2 + b3 = a3 + b3 + 3 ab (a + b)

Binomio Diferencia al Cubo El Cubo del Primer Término, menos el triple producto del cuadrado del primer por el segundo Término, más el triple producto del primer por el cuadrado del segundo Término, menos el cubo del segundo Término.

( a - b )3 = a3 - 3 a2b + 3 ab2 - b3

Suma de dos Cubos: Se saca raiz cubica a cada uno de los dos terminos cubicos, para obtener un binomio (la suma de dos numeros), y en base a ese binomio, se utiliza la siguiente regla para obtener un trinomio: el cuadrado del primero, menos el producto del primero por el segundo, más el cuadrado del segundo.

a3 + b3 = ( a + b ) ( a2 – ab + b2)

Diferencia de Cubos Se saca raiz cubica a cada uno de los dos terminos cubicos, para obtener un binomio (la diferencia de dos numeros), y en base a ese binomio, se utiliza la siguiente regla para obtener un trinomio: el cuadrado del primero, más el producto del primero por el segundo, más el cuadrado del segundo.

a3 - b3 = ( a - b ) ( a2 + ab + b2)

Trinomio Suma al Cuadrado ó Cuadrado de un Trinomio: El cuadrado del primer término, más el cuadrado del segundo término, más el cuadrado del tercer término, más el doble producto del primero por el segundo, más el doble producto del segundo por el tercero, más el doble producto del tercero por el primero.

(

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com