ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Propiedades coligativas


Enviado por   •  11 de Junio de 2014  •  2.273 Palabras (10 Páginas)  •  240 Visitas

Página 1 de 10

PROPIEDADES COLIGATIVAS

Muchas de las propiedades de las disoluciones verdaderas se deducen del pequeño tamaño de las partículas dispersas. En general, forman disoluciones verdaderas las sustancias con un peso molecular inferior a 104 dalton. Algunas de estas propiedades son función de la naturaleza del soluto (color, sabor, densidad, viscosidad, conductividad eléctrica, etc.). Otras propiedades dependen del disolvente, aunque pueden ser modificadas por el soluto (tensión superficial, índice de refracción, viscosidad, etc.). Sin embargo, hay otras propiedades más universales que sólo dependen de la concentración del soluto y no de la naturaleza de sus moléculas. Estas son las llamadaspropiedades coligativas.

Las propiedades coligativas no guardan ninguna relación con el tamaño ni con cualquier otra propiedad de los solutos.

Son función sólo del número de partículas y son resultado del mismo fenómeno: el efecto de las partículas de soluto sobre la presión de vapor del disolvente (Ver Figura superior).

Las cuatro propiedades coligativas son:

• descenso de la presión de vapor del disolvente

• elevación ebulloscópica

• descenso crioscópico

• presión osmótica

SOLUCIONES QUÍMICAS

AMORTIGUADORAS, REGULADORAS O BUFFER

Una solución buffer o tampón o amortiguadora es una mezcla de un ácido débil y una base débil, la cual se puede obtener mezclando un ácido débil con una de sus sales correspondientes, “tampón ácido”, puesto que el anion del ácido es una base débil. También se puede preparar la solución amortiguadora mezclando una base débil con una de sus sales correspondientes “tampón básico”. El ácido débil reacciona con cual quien cantidad de OH- agregado, mientras que el papel de la base débil es consumir el H+ que pueda haberse introducido. Esto impide que se perturbe en mayor grado el equilibrio:

H2O H+ + OH- y del cual dependa el PH mayor de la solución.

El efecto amortiguador de estas soluciones se presenta cuando se les agrega pequeñas cantidades de ácidos fuertes o bases fuertes. El responsable de este efecto es una o más reacciones que ocurren dentro del sistema y en las cuales se consume casi totalmente el ácido o base agregados. Esta reacción puede determinarse fácilmente sobre la base del equilibrio que predomina en el sistema aplicando el teorema de Chatelier y teniendo en cuenta que siempre que un ácido esta en presencia de dos bases reacciona con aquella que produzca la sustancia más estable o que posee la menor constante de disociación y lo mismo puede decirse si se trata de una base en presencia de dos ácidos

La soluciones de ácidos débiles y sus bases conjugadas, por ejemplo ácido acético y acetato de sodio, tienen la propiedad de reaccionar cuando se les añade ácidos y bases.

El ácido (ácido acetifico) reacciona al añadirse una base, mientras que su base conjugada (ión acetato) reacciona al añadirse un cabido. La adición de cantidades relativamente pequeñas de ácidos y bases ejerce poco efecto en el PH de la solución original.

Puesto que estas soluciones impiden cambios comparativamente grandes en PH, se llaman soluciones amortiguadoras. Estas soluciones no son especialmente sensibles a la adición de pequeñas cantidades de un ácido o una base. Bases débiles (NH3) y sus ácidos conjugados (NH4Cl) son también soluciones amortiguadoras.

Las soluciones amortiguadoras son importantes en nuestros procesos vitales el Ph de los jugos gástricos ayudan a la digestión de los alimentos se mantienen entre 1.6 - 1.7 mediante la acción amortiguadora. La saliva se mantiene a un PH de 8.0. La sangre mantiene con mucha exactitud entre los limites del Ph normal de 7.3 y 7.5 por un sistema complejo de soluciones amortiguadoras que consisten en proteínas del suero que consta de aminoácidos que contienen grupos ácidos (-COOH) y básicos (-NH2); iones de carbonato CO23- y los iones de bicarbonato HCO3-; E iones de fosfato ácido (H2PO4 -) y de fosfato básico HPO42 -.

Las propiedades coligativas son aquellas que están muy relacionadas con el cambio de ciertas propiedades físicas en los solventes cuando le agregamos a estos una cantidad determinada de un soluto no volátil. Específicamente las propiedades que varían son: Punto de ebullición (aumento ebulloscópico), Punto de congelación (descenso crioscópico), Descenso de la presión del vapor y la aparición de la Presión Osmótica.

Estas cuatro propiedades no variarían o no aparecerían si no se agregara el soluto a un solvente puro. Obviamente las moléculas del soluto interaccionan o interfieren en el normal movimiento de las moléculas del solvente afectando seriamente a estas propiedades mencionadas.

Estos cambios se pueden cuantificar a través de fórmulas. En el caso de las variaciones de los puntos de ebullición y de fusión la fórmula siguiente es la más utilizada.

∆T = K.m (Kb en el caso del ascenso ebulloscópico y Kc en el caso del descenso crioscópico).

La m expresa la molalidad de la solución. Recordando brevemente el concepto de molalidad, es la cantidad de moles de soluto por cada 1000 gramos de solvente. La K tiene como unidad al grado/m o sea grado centígrado dividido la molalidad. De esta manera se cancelan m con m y queda el grado de temperatura cuando calculamos al ∆T. se debe aclarar que el valor de los K depende del solvente usado en cuestión.

En la mayoría de los problemas de propiedades coligativas se usa como solvente al agua (solvente universal). La Kb es 0.52 °C/m y para Kc es 1.86 °C/m.

De manera que en los problemas nos pueden preguntar cualquiera de las tres partes de la fórmula. K, m o ∆T. Generalmente nos preguntan ∆T. Pero con simples despejes matemáticos se puede averiguar lo que nos pregunten.

También suele usarse en algunos cursos avanzados de química otra fórmula que si bien parece algo extensa es más práctica si nos dan como datos las masas de soluto y de solvente (agua). No es más que una adaptación a la anterior.

∆T =(K.g.1000)/(P.M sto . G)

G = masa de solvente (agua). g = masa de soluto. K (de ebullición o de congelación según corresponda).

Descenso de la presión de vapor:

La presión de vapor de un solvente con un soluto no volátil (Solución), es menor que la presión del mismo solvente en estado puro. Este suceso también se puede cuantificar gracias a la ley de Rault. Sostiene que la presión de un solvente en una solución a determinada temperatura es igual a la presión de vapor del mismo solvente puro multiplicada por la fracción molar de este solvente en la solución a la misma temperatura.

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com