Trabajo cálculo Diferencial
Enviado por johnmo24 • 10 de Abril de 2013 • 488 Palabras (2 Páginas) • 455 Visitas
FASE 1
lim┬(n→ -1)〖(√(5+n)-2)/(n+1)〗
lim┬(n→ -1)〖((√(5+n)-2)(√(5+n)+2))/((n+1)(√(5+n)+2))〗
lim┬(n→ -1)〖(5+n-4)/((n+1)(√(5+n)+2))〗
lim┬(n→ -1)〖((n-1))/((n+1)(√(5+n)+2))〗
lim┬(n→ -1)〖1/((√(5+n)+2))〗
lim┬(n→ -1)〖1/((√(5-1)+2))〗
lim┬(n→ -1)〖1/((√4+2))〗
lim┬(n→ -1)〖1/((2+2))〗
〖lim┬(n→ -1)= 〗〖1/4〗
lim┬(a→ π)〖2cos2a-4sen3a〗
lim┬(a→ π)〖= 2cos(2π)-4sen(3π)〗
lim┬(a→ π)=2-0
lim┬(a→ π)=2
lim┬(x→ 1)〖√(x^2+3x)- √(x^2+x)〗
lim┬(x→ 1)〖√(1^2+3*1)- √(1^2+1)〗
lim┬(x→ 1)〖√4- √2〗
〖lim┬(x→ 1)= 〗〖2- √2〗
lim┬(x→ 1)=-2√2
Demuestre que:
lim┬(h→ b)〖(〖(b+h) 〗^2- b^2)/h=3b〗
lim┬(h→ b)〖(〖(b+h) 〗^2- b^2)/h=3b〗
lim┬(h→ b)〖(b^2+2bh+ h^2- b^2)/h=3b〗
lim┬(h→ b)〖(h^2+2bh)/h=3b〗
lim┬(h→ b)〖(h(h+2b))/h=3b〗
lim┬(h→ b)〖h+2b=3b〗
lim┬(h→ b)〖b+2b=3b〗
lim┬(h→ b)〖3b=3b〗
5. lim┬(h→ 0)〖(〖(x+h) 〗^3- x^3)/h=〖3x〗^2 〗
lim┬(h→ 0)〖(x^3+3hx^2+〖3h〗^2 x+h^3- x^3)/h=〖3x〗^2 〗
lim┬(h→ 0)〖(3hx^2+〖3h〗^2 x+h^3)/h=〖3x〗^2 〗
lim┬(h→ 0)〖(h(3x^2+3hx+h^2))/h=〖3x〗^2 〗
lim┬(h→ 0)〖3x^2+3hx+h^2=〖3x〗^2 〗
lim┬(h→ 0)〖3x^2+3(0)x+〖(0)〗^2=〖3x〗^2 〗
lim┬(h→ 0)〖3x^2+0+0=〖3x〗^2 〗
lim┬(h→ 0)〖3x^2=〖3x〗^2 〗
FASE 2
C. Demuestre los siguientes límites infinitos:
6)
〖lim〗_(a→∞) {(a^2+1)/(a+2)-(a^2+10)/(a+1)}=-1
〖lim〗_(a→∞) (〖(a〗^2+1)(a+1)-(a+2)(a^2+10))/(a+2)(a+1) = -1
〖lim〗_(a→∞ ) ((a^3+a^2+a+1-a^3+10a+〖2a〗^2+20))/(a^2+a+2a+2)=-1
〖lim〗_(a→∞ ) (〖-a〗^2+11a+21)/(a^2+3a+2)= -1
〖lim〗_(a→∞ ) (〖-a〗^2/a^2 +11a/a^2 +21/a^2 )/(a^2/a^2 +(3a/a^2 )+(2/a^2 ) )=-1
〖lim〗_(a→∞) -1/1=-1
〖lim〗_(a→∞ ) -1=-1
7) lim┬(a → ∞)〖√(x^2+x)-x〗= 1/2
lim┬(a → ∞)〖(√(x^2+x)-x)* √(x^2+x)/√(x^2+x)〗
lim┬(a → ∞)〖(〖√(x^2+x)〗^2-x^2)/(√(x^2+x)+x)〗
lim┬(a → ∞)〖(〖√(x^2+x)〗^2-x^2)/(√(x^2+x)+x)〗
...