MATEMATICA
Enviado por edsonamaya • 7 de Diciembre de 2014 • 1.775 Palabras (8 Páginas) • 221 Visitas
INTEGRALES IMPROPIAS
Llamaremos integrales impropias a aquellas integrales que:
Los límites de integración crecen o decrecen sin limitación (-∞,∞)
Que las función integral sea discontinua en algún valor del intervalo de la ecuación f(x) discontinua
CASO 1:
Cuando los límites de son +∞ y -∞
∫_(-∞)^b▒f(x)dx 2. ∫_a^(+∞)▒f(x)dx
=〖lim┬(a→-∞) ∫_a^b▒〖f(X)〗〗dx = 〖lim┬(b→+∞) ∫_a^b▒〖f(X)〗〗dx
3. ∫_(-∞)^(+∞)▒f(x)dx
=∫_(-∞)^0▒f(x)dx + ∫_0^(+∞)▒f(x)dx
〖=lim┬(a→-∞) ∫_a^b▒〖f(X)〗〗dx + 〖lim┬(a→-∞) ∫_a^b▒〖f(X)〗〗dx
Si el integral impropio da un número entonces se dirá que CONVERGE a el valor encontrado. Si por el contrario el integral no existe (-∞ o +∞) entonces se dirá que DIVERGE.
Evaluar el siguiente integral:
∫_(-∞)^5▒xdx/〖〖(x〗^2+1)〗^3 = 〖=lim┬(a→-∞) ∫_a^5▒xdx/〖〖(x〗^2+1)〗^3 〗
∫_(-∞)^5▒xdx/〖〖(x〗^2+1)〗^3 =∫_(-∞)^5▒〖〖〖(x〗^2+1)〗^(-3 ) dx〗
U= x2+1
Du=2xdx
(du )/2=xdx
∫▒〖u^(-3 ) du/u〗=1/2 ∫▒〖u^(-3 ) du〗
=1/2 ⌊u^(-2)/(-2)⌋ + c = (-1)/〖4u〗^2 + c = - 1/(4〖(x〗^2+1)^2 ) + c
lim┬(a→-∞)〖(-1/(4〖〖(x〗^2+1)〗^2 ))^ 〗a5 = lim┬(a→-∞)〖⌈(-1/(4〖(26)〗^2 ))-(-1/(4〖〖(a〗^2+1)〗^2 ))⌉^ 〗
〖=lim┬(a→-∞)〗〖⌈(-1/2704)-(-1/(4〖〖(a〗^2+1)〗^2 ))⌉^ 〗
EVALUAR EL INTEGRAL
=〖⌈(-1/2704)-(-1/(4〖〖(-∞〗^2+1)〗^2 ))⌉^ 〗 = -1/2704+ 1/∞
R//=-1/2704 converge
Ejercicio N° 2
∫_0^(+∞)▒dx/√(x+5)
∫_0^(+∞)▒(x+5)^(-1/2) dx =〖 lim┬(b→+∞)〗〖∫_0^a▒(1+1/n) ^(-1/2) 〗 dx
∫_0^(+∞)▒(x+5)^(-1/2) dx= ∫▒u^((-1)/2) du
U=x+5 =〖2u〗^((-1)⁄2)/1
Du=dx =2〖(x+5)〗^(1⁄2) + c
(=lim)┬(b→∞)〖⌈(2√(x+5))⌉^b 〗0
(=lim)┬(b→∞)〖〖 ⌈(2√(b+5))⌉〗^ 〗-⌈(2√(0+5))⌉
(=lim)┬(b→∞)〖〖 ⌈(2√(b+5))⌉〗^ 〗-⌈(2√5)⌉
EVALUANDO LÍMITES
=(2√(∞+5))-(2√5)
=(2√∞)-(2√5)
R// =∞ DIVERGE
3.∫_0^∞▒(〖5x〗^2 dx)/(〖(2x〗^3 〖+1)〗^5 ) = lim┬(b→∞)〖∫_0^a▒(〖2x〗^3+1) ^(-5) x^2 〗 dx=∫▒u^(-5) du
u=(〖2x〗^3+1)dx =∫▒〖u^(-6)/(-6) du+c〗
du= 〖2x〗^3+dx
du=〖6x〗^2 dx
du/6= x^2 dx
4. ∫_(-∞)^(+∞)▒dx/(x^(2 )+1)= ∫_(-∞)^0▒〖dx/(x^(2 )+1)+ ∫_0^(-∞)▒〖dx/(x^(2 )+1) 〗 〗
=lim┬(a→-∞)∫_a^0▒〖dx/(x^(2 )+1)+ lim┬(a→-∞)∫_0^b▒dx/(x^(2 )+1) 〗
lim┬(a→-∞) arctanx|0a + lim┬(a→-∞) arctanx|b0
lim┬(a→-∞) arctan(0)- arctan(a)+ ⌈lim┬(a→-∞) arctan(b)- arctan(0) ⌉
lim┬(a→-∞) arctan(a)+ ⌈lim┬(a→-∞) arctan(b) ⌉
EVALUANDO LÍMITE
=-arctan(-∞) +arctan(∞)
= (-π/2) + π/2
= π/2+ π/2
=π R//
∫_2^5▒xdx/√(3&x^2-25) =∫_2^n▒3/(4 ) (x^2-25)^(2⁄3) =lim┬(b→5) ̇ ∫_2^n▒〖3(x^2-25)〗^(2⁄3)/4
∫_2^5▒(x^2-25)^(〖-1/〗_3 ) xdx
U=x^2-25dx
Du=2x-0dx
du/2=xdx ∫_2^5▒〖u^(-y3) du/2〗 = 1/(2 ) ∫▒〖u^(-1/3)+〗 c
x^2-25=0 1/2 [3/2 u^(2⁄3) ]+c
3/4 (u^(2⁄3) )= [3/4 (x^2-25)^(2⁄3) ]
x^2=25
x=√25 lim┬(n-5)∫_2^n▒〖3(x^2-25)^(2⁄3) 〗 =[〖3(n^2-25)〗^(2⁄3)/4] + [((2^2 )-25)^(2⁄3)/4] =R/ -5.7
Ejercicios:
∫_0^3▒dx/√(3&x-1) ∫_0^3▒〖(x-1)^((-1)⁄3) dx=∫_0^1▒〖(x-1)^(1⁄3) dx+∫_1^3▒〖(x-1)^((-1)⁄3) dx〗〗〗
x-1=0 (lim)┬(n→1)〖∫_0^n▒(x-1)^(1⁄3) +(lim)┬(m→1)∫_m^3▒〖(x-1)^((-1)⁄3) dx〗 〗
x=0
(lim)┬(n→1)〖[〖3(x-1)〗^(2⁄3)/2]^n+(lim)┬(m→1)〖[〖3(x-1)〗^(2⁄3)/2]^3 〗 〗
=(lim)┬(n→1)〖((3(n-1))/2)^(2⁄3)+(lim)┬(n→1)〖(〖3(n-1)〗^(2⁄3)/2)+(lim)┬(m→1)〖(〖3(3-1)〗^(2⁄3)/2)+((3(n-1))/2)^(2⁄3) 〗 〗 〗
(lim)┬(n→1)〖[〖3(n-1)〗^(2⁄3)/2-3 〖3(-1)〗^(2⁄3)/2]+〗 (lim)┬(m→1)[〖3(2)〗^(2⁄3)/2-3 (n-1)^(2⁄3)/2]
(lim)┬(n→)(〖3(n-1)〗^(2⁄3)/2-(-3)/2)+(lim)┬(m→1)[2.38-3 〖(m-1)〗^(2⁄3)/2]
EVALUANDO
=[〖3(1-1)〗^(2⁄3)/2-3/2]+[2.38-3 〖(1+1)〗^(2⁄3)/2]
[0-3/2]+[2.38-0]
= -3⁄2+2.38= R// 0.88
∫_0^(+∞)▒〖3x/(8-3x2) dx=(lim)┬(b→+∞)∫_0^b▒〖3x/〖8-3x〗^2 dx=(lim)┬(b→∞)〖3∫_0^b▒(du/(-b))/u〗 〗 〗
u=8-〖3x〗^2
du=-6xdx (=lim)┬(b→∞)〖3/6 ∫_0^b▒du/u〗
(du=xdx)/(-6) =(lim)┬(b→∞)〖(-1)/2 ∫_0^b▒du/u〗
=(lim)┬(b→∞)〖[(-1)/2 ln[u] ]_0^b 〗=(lim)┬(b→+∞)〖[(-1)/2ln⁄〖8-3x〗^2 ]_0^b 〗
=(lim)┬(b→+∞)[1/2 (ln〖(〖8-3b〗^2 〗 )-ln〖〖(8-3(o)〗^2)〗 ]
〖=(lim)┬(b→+∞)〗[-1/2 [ln〖〖(8-3b〗^2)-(ln〖(8))〗 〗 ]]
EVALUANDO LIMITE
=(-1)/2(〖ln〖8-3(∞)〗〗^2/ln〖(8)〗)
=(-1)/2 (ln〖(-∞〗 )-ln〖(8))〗
R/= ∞ diverge R//
∫_(-∞)^0▒〖dx/(4^2+x^2 ) →〗 ∫▒dx/(a^2+u^2 )=(1 )/a arc tan〖u/a+c〗
(lim)┬(a→-∞)〖[1/4 arc tan〖x/4〗 ]_a^0 = (lim)┬(a→-∞)(1/4 (arc tan(0/4)-arc tan(a/4) )) 〗
(lim)┬(a→-∞)[1/4 (arc tan0-arc tan(a/4) )]
EVALUANDO LIMITES
...