Proposición lógica y valores de verdad
Enviado por jeysmarmatabello • 2 de Octubre de 2013 • 1.578 Palabras (7 Páginas) • 535 Visitas
Proposición lógica y valores de verdad.
El valor de verdad de una proposición lógica atómica (o variable proposicional) es, por definición, verdadero o falso (podemos representarlo como V o F).
Así el enunciado “llueve” es verdadero si y sólo si está lloviendo en ese momento. Pero si dicho enunciado se considera como proposición lógica atómica, p, entonces puede ser tanto verdadera como falsa.
Es una verdad de hecho o contingente, porque tiene los dos posibles valores de verdad, por la propia definición de proposición lógica.
El contenido de la relación de un enunciado con lo real no es objeto de la lógica sino de otras ciencias.
Verdad de hecho o contingente, contradicción y tautología.
El valor de verdad de una proposición molecular puede ofrecer los siguientes casos:
• Que su valor dependa del valor de verdad de las proposiciones que la integran, según las conexiones lógicas que las unen. En ese caso dicha proposición tiene un valor de Verdad de hecho o contingente. Puede ser unas veces verdadera y otras veces falsa según la verdad o falsedad de cada una de las proposiciones atómicas que la integran.
El valor lógico V (verdad) de la proposición “llueve y hace calor”, sólo se dará en el caso de que las dos proposiciones “llueve” (p) y “hace calor” (q) sean tomadas en su valor de V; en los demás casos será falsa. Sin embargo en la proposición “llueve o hace calor” basta que una de las dos sea considerada en su valor de verdad V para que la proposición molecular sea verdadera. La función “y” conjuntiva y la función “o” disyuntiva se definen en tablas de verdad, como funciones de verdad, functores o conectivas.
Las dos proposiciones moleculares enunciadas más arriba pueden ser verdaderas o falsas según sean los valores que tomemos en consideración en cada una de las proposiciones que la integran. Por eso ambas son contingentes.
• Que su valor de verdad no dependa del valor de verdad de las proposiciones que la forman, sino que, por la forma en que se establecen sus conexiones, como relaciones lógicas, siempre y necesariamente es falsa. Entonces esa proposición es una contradicción.
El valor de verdad de la proposición “llueve y no llueve” es una contradicción y siempre será falsa, con independencia del valor que consideremos V o F de “llueve” (p) y de “no llueve” (¬p). La función de verdad “no” se define mediante una tabla de verdad.
• Que su valor de verdad no dependa del valor de verdad de las proposiciones que la forman, sino que, por la forma en que se establecen sus conexiones, siempre y necesariamente es verdadera. Entonces esa proposición es una tautología.
El valor de verdad de la proposición “llueve o no llueve”, es una tautología y siempre será verdadera con independencia de los valores que consideremos de “llueve” (p) o de “no llueve” (¬p).
El análisis del valor de verdad de una proposición se realiza mediante las tablas de verdad.
Ejemplos de Proposiciones:
1) Cuando se deja caer un cuerpo, va hacia arriba. (F)
2) Cuando se ejerce resistencia al empuje, es porque existen fuerzas llamadas fricción que se oponen a las fuerzas de empuje. (V)
3) Cuando se coloca una piedra en un recipiente de agua, el volumen es el mismo (F)
4) Cuando aumentas la longitud de onda, la amplitud es mayor. (F)
5) Cuando un aceite es sólido es porque está mas saturado (F)
6) SI le entrego 500Kcal a un litro de agua y esa cantidad de energía supera al calor específico entonces toda el agua se evaporará (V)
7) El cambio de estado de la materia es una propiedad química (F)
8) Una función es impar siempre y cuando sea monótona (F)
9) Un litro de agua pesa un kilo. (V)
10) Si un sólido es más denso que el líquido que lo contiene en un recipiente, entonces precipitará (V)
Conectivos Lógicos.
En lógica, una conectiva lógica, o simplemente conectiva, es un símbolo que se utiliza para conectar dos fórmulas bien formadas (atómicas o moleculares), de modo que el valor de verdad de la fórmula compuesta depende del valor de verdad de las fórmulas componentes.
En programación se utilizan para combinar valores de verdad y obtener nuevos valores que determinen el flujo de control de un algoritmo o programa.
Las conectivas lógicas son, junto con los cuantificadores, las principales constantes lógicas de muchos sistemas lógicos, principalmente la lógica proposicional y la lógica de predicados.
Las conectivas son funciones de verdad. Quiere decir que son funciones que toman uno o dos valores de verdad, y devuelven un único valor de verdad. En consecuencia, cada conectiva lógica puede ser definida mediante una tabla de valores de verdad que indique qué valor devuelve la conectiva para cada combinación de valores de verdad. A continuación hay una tabla con las conectivas más usuales :
Proposiciones Condicionales:
Una
...