ESTADISTICA Y PROBABILIDAD
Enviado por merywill • 23 de Octubre de 2013 • 1.426 Palabras (6 Páginas) • 273 Visitas
REPUBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA EDUCACION
U.E. C.B.S.J
5to AÑO SECCION “U”
ESTADISTICA Y PROBABILIDAD
INTRODUCCION
El concepto de probabilidad nace con el deseo del hombre de conocer con certeza los eventos futuros. Es por ello que el estudio de probabilidades surge como una herramienta utilizada por los nobles para ganar en los juegos y pasatiempos de la época. El desarrollo de estas herramientas fue asignado a los matemáticos de la corte.
Con el tiempo estas técnicas matemáticas se perfeccionaron y encontraron otros usos muy diferentes para la que fueron creadas. Actualmente se continúo con el estudio de nuevas metodologías que permitan maximizar el uso de la computación en el estudio de las probabilidades disminuyendo, de este modo, los márgenes de error en los cálculos.
TEORIA DE LA ESTADISTICA Y LA PROBABILIDAD
Definición de probabilidad
La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
Experimentos deterministas
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Ejemplo:
Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas, que la piedra bajará. Si la arrojamos hacia arriba, sabemos que subirá durante un determinado intervalo de tiempo; pero después bajará.
Experimentos aleatorios
Son aquellos en los que no se puede predecir el resultado, ya que éste depende del azar.
Ejemplos:
Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz.
Si lanzamos un dado tampoco podemos determinar el resultado que vamos a obtener.
TEORIA DE LAS PROBABILIDADES
La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio, con el fin de cuantificar dichos resultados y saber si un suceso es más probable que otro. Con este fin, introduciremos algunas definiciones:
Suceso
Es cada uno de los resultados posibles de una experiencia aleatoria.
Ejemplos:
Al lanzar una moneda salga cara.
Al lanzar una moneda se obtenga 4.
Espacio muestral
Es el conjunto de todos los posibles resultados de una experiencia aleatoria, lo representaremos por E (o bien por la letra griega Ω).
Ejemplos:
Espacio muestral de una moneda:
E = {C, X}.
Espacio muestral de un dado:
E = {1, 2, 3, 4, 5, 6}.
Suceso aleatorio es cualquier subconjunto del espacio muestral.
Ejemplos:
Tirar un dado un suceso sería que saliera par, otro, obtener múltiplo de 3, y otro, sacar 5.
Un ejemplo completo
Una bolsa contiene bolas blancas y negras. Se extraen sucesivamente tres bolas. Calcular:
1. El espacio muestral.
E = {(b,b,b); (b,b,n); (b,n,b); (n,b,b); (b,n,n); (n,b,n); (n,n ,b); (n, n,n)}
2. El suceso A = {extraer tres bolas del mismo color}.
A = {(b,b,b); (n, n,n)}
3. El suceso B = {extraer al menos una bola blanca}.
B= {(b,b,b); (b,b,n); (b,n,b); (n,b,b); (b,n,n); (n,b,n); (n,n ,b)}
4. El suceso C = {extraer una sola bola negra}.
C = {(b,b,n); (b,n,b); (n,b,b)}
Enfoques conceptuales diferentes para definir la probabilidad y determinar los valores de probabilidad:
El enfoque clásico
Dice que si hay x posibles resultados favorables a la ocurrencia de un evento A y z posibles resultados desfavorables a la ocurrencia de A, y todos los resultados son igualmente posibles y mutuamente excluyente (no pueden ocurrir los dos al mismo tiempo), entonces la probabilidad de que ocurra A es:
El enfoque clásico de la probabilidad se basa en la suposición de que cada resultado sea igualmente posible.
Este enfoque es llamado enfoque a priori porque permite, (en caso de que pueda aplicarse) calcular el valor de probabilidad antes de observar cualquier evento de muestra.
Ejemplo:
Si tenemos en una caja 15 piedras verdes y 9 piedras rojas. La probabilidad de sacar una piedra roja en un intento es:
El enfoque de frecuencia relativa
También llamado Enfoque Empírico, determina la probabilidad sobre la base de la proporción de veces que ocurre un evento favorable en un número de observaciones. En este enfoque no ese utiliza la suposición previa de aleatoriedad. Porque la determinación de los valores de probabilidad se basa en la observación y recopilación de datos.
Ejemplo:
Se ha observado que 9 de cada 50 vehículos que pasan por una esquina no tienen cinturón
...