Límites de una Sucesión
Enviado por nadiardz • 7 de Diciembre de 2011 • Práctica o problema • 5.491 Palabras (22 Páginas) • 626 Visitas
Límites de una Sucesión
El límite de una sucesión particular es generalmente un número o un punto definido L, con la condición que todos los términos de esa sucesión particular estén muy cerca de L para grandes cifras de n. En caso de que el límite esté presente, se dice entonces que la sucesión es convergente y converge en el punto definido L. En el caso complementario, se dice que la sucesión es divergente.
Matemáticamente la definición puede ser demostrada suponiendo an} sea la sucesión y l un número real. Si por cada ε › 0 entonces encontramos m N, tal que , n N, es l y se escribe an=l. Esto se lee como: Como n tiende al infinito, tiende a l.
Ademas, si para una sucesión an se podemos encontrar un numero M positivo, tal que, | an | M n N entonces la sucesión { an } se dice que es cerrada.
Similarmente, las sucesiones pueden estar creciendo o decreciendo.
Algunas de las propiedades generales de los Límites de una Sucesión incluyen:
1).Los Límites de las sucesiones de origen convergentes son únicos.
2). Una sucesión de origen convergente es siempre cerrada y viceversa.
3). En el caso de las sucesiones {an} n 1, junto con {bn} n 1 son de origen convergente y x e y son números reales, en ese caso, la sucesión { xan + ybn }n 1 es también convergente.
4). Similarmente, si las sucesiones {an} n 1 junto con {bn} n 1 son de origen convergente y x e y son números reales, en ese caso, la sucesión { xan . ybn }n 1 es también convergente. Obtenemos,
{ an . bn }= an . bn
5). En el caso de la sucesión {an}, n 1 tiene un origen convergente con la condición que an 0 y an 0 para n 1, entonces la secuencia del tipo es también convergente.
Los límites de las sucesiones estándares pueden ser útiles para facilitar el cálculo. Algunos de estos son:
1). = 0
2). = 0 | r | < 1.
3). = 0 donde sn = a + ar + ar2 + …..+ Este límite es conocido como serie infinita geométrica con el primer término “a” y la razón común “r”.
Para captar efectivamente el concepto de las propiedades y las características de los límites de sucesiones, observemos un ejemplo en el que se requiere demostrar que para un número x, donde 0 <x <1
xn = 0
Dado que 0 < x < 1, por tanto la sucesión xn es cerrada y decreciente. De acuerdo a la segunda propiedad citada arriba, esta es convergente. Entonces,
xn = L
Por lo tanto, tenemos que demostrar L = 0
Como, xn+1 es parte de la sucesión xn , entonces, xn+1 = L
Ahora, dado que xn+1 = x xn
De las propiedades citadas,
xn+1 = x. xn
L = x. L
Ahora bien, como x 0, entonces, L =0.
Límite de una función de variable real
El límite de una función de variable real es un concepto importante en el cálculo. Según este, si F es la función de una variable real r, en ese caso, el límite de F como r se aproxima a x existe, si existe otro número real R entonces para un número positivo conocido , existe otro número delta, tal que | F® - N | ‹ para todo r que satisfaga | r - x | < . Esto es,
y son letras de Grecia utilizadas tradicionalmente, a las cuales se les llama como descripción de límites épsilon-delta.
Puede ser el caso cuando la función F satisface \ limita_{r\a\x} la definición en una sola dirección en la recta numérica real. Suponga que satisface la existencia de límites desde la izquierda. En ese caso, puede ser representada como
Este caso puede ser leído como ‘la existencia de límites del lado izquierdo’. Del mismo modo, los límites del lado derecho pueden ser demostrados como
Sin embargo, no se puede decir que el límite existe enteramente hasta que ambos límites de lado izquierdo y derecho persistan y se conviertan iguales.
Mientras se resuelve un problema “ límite de una función de variable real “ se debe hacer énfasis principalmente en el cálculo del rango del límite y no en identificar si el límite existe o no.
El límite de una función de variable real se puede definir en el infinito si la recta numérica es considerada extensible. Si F® es la función, entonces, el límite infinito de F se puede representar como
Existen algunas propiedades que valen la pena considerar mientras se trata con el concepto de límite de la función de variable real F:
1). El límite de F se dice que existe cuando los límites del lado derecho y del lado izquierdo existen para la función correspondiente.
2). Se dice que F es continua en un punto particular A solo si en el caso el límite F( r ) como r se mueve hacia A subsiste y es equivalente a f(A).
3). Si el límite de la función F® como r se mueve hacia A es L1 y el límite de otra función H® como r se mueve hacia A es L2, entonces, el límite de F® + H® como se mueve hacia A es L1 + L2.
4). El límite de F debe ser compatible con las operaciones aritméticas con la condicionante que el límite del lado derecho exista.
La definición y sus propiedades pueden ser más profundamente ilustradas con la ayuda de un ejemplo. Consideremos una función F® =
La función puede ser simplificada como:
F® = (r + 2) (r - 2)
(r – 2)
F® = r + 2, r 2
Es decir la línea r + 2 con el punto ( 2, 4 ) son los puntos faltantes.
Se puede observar que r = 2 no se encuentra en el dominio de F y 4 no está en el rango correspondiente. Por lo cual, al poner r cerca del 2, obligará a F hasta el punto (2, 4). Esto es,
De acuerdo a la definición, si un número real es dado, entonces se necesita encontrar otro número , tal que, < . Entonces, este puede ser probado como:
Si | r −2 | <
2+ < r < 2 -
2 - + 2< r + 2 < 2 + + 2
4 - < r + 2 < 4 +
4 - < r + 2 < 4 +
|(r + 2) - 4| <
Cálculo de los Límites
Todos nosotros hemos leído en las matemáticas básicas que si el valor del denominador es cero, entonces obtendremos un valor indefinido como producto. Pero en el caso del cálculo, podemos obtener una solución aunque el valor del denominador sea cero.
Para entender el concepto, mire el ejemplo dado a continuación, f(x) = x3/ x
Si lo resolvemos tenemos f(x) = x2 como respuesta. El gráfico de esta función es una parábola, como se muestra debajo,
Ahora bien, si x alcanza el valor de cero en algún punto entonces tenemos una salida indefinida.
Utilizando el cálculo obtenemos el valor de la ecuación
...