ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

METODO GAUSS Y JACOBI


Enviado por   •  31 de Agosto de 2014  •  558 Palabras (3 Páginas)  •  324 Visitas

Página 1 de 3

MÉTODO DE GAUSS-SEIDEL

El método de eliminación para resolver ecuaciones simultáneas suministra soluciones suficientemente precisas hasta para 15 o 20 ecuaciones. El número exacto depende de las ecuaciones de que se trate, del número de dígitos que se conservan en el resultado de las operaciones aritméticas, y del procedimiento de redondeo. Utilizando ecuaciones de error, el número de ecuaciones que se pueden manejar se puede incrementar considerablemente a más de 15 o 20, pero este método también es impráctico cuando se presentan, por ejemplo, cientos de ecuaciones que se deben resolver simultáneamente. El método de inversión de matrices tiene limitaciones similares cuando se trabaja con números muy grandes de ecuaciones simultáneas.

EJEMPLO

Resolver el siguiente sistema de ecuación por el método Gauss-Seidel utilizando un = 0.001.

0.1 X1 + 7.0 X2 - 0.3 X3 = -19.30

3.0 X1 - 0.1 X2 - 0.2 X3 = 7.85

0.3 X1 - 0.2 X2 - 10.0 X3 = 71.40

SOLUCIÓN:

Primero ordenamos las ecuaciones, de modo que en la diagonal principal estén los coeficientes mayores para asegurar la convergencia.

3.0 X1 - 0.1 X2 - 0.2 X3 = 7.85

0.1 X1 + 7.0 X2 - 0.3 X3 = -19.30

0.3 X1 - 0.2 X2 - 10.0 X3 = 71.40

Despejamos cada una de las variables sobre la diagonal:

Suponemos los valores iniciales X2 = 0 y X3 = 0 y calculamos X1

Este valor junto con el de X3 se puede utilizar para obtener X2

La primera iteración se completa sustituyendo los valores de X1 y X2 calculados obteniendo:

En la segunda iteración, se repite el mismo procedimiento:

Comparando los valores calculados entre la primera y la segunda iteración

Como podemos observar, no se cumple la condición

Entonces tomamos los valores calculados en la última iteración y se toman como supuestos para la siguiente iteración. Se repite entonces el proceso:

Comparando de nuevo los valores obtenidos

Como se observa todavía no se cumple la condición

Así que hacemos otra iteración

Comparando los valores obtenidos

Dado que se cumple la condición, el resultado es:

X1 = 3.0

X2 = -2.5

X3 = 7.0

Como se puede comprobar no se tiene un número exacto de iteraciones para encontrar una solución. En este ejemplo, se hicieron 3 iteraciones, pero a menudo se necesitan más iteraciones.

METODO DE JACOBI

En análisis numérico el método de Jacobi es un método iterativo, usado para

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com