Mate
Enviado por adjacm • 24 de Octubre de 2013 • Tesis • 1.443 Palabras (6 Páginas) • 210 Visitas
El concepto de relación implica la idea de correspondencia entre los elementos de dos conjuntos que forman parejas ordenadas.
Cuando se formula una expresión que liga dos o más objetos entre sí, postulamos una relación (no necesariamente matemática) Por ejemplo:
Samuel es padre de Irma. (Samuel, Irma)
Del ejemplo anterior podríamos decir matemáticamente que:
S ---> I
Podemos definir la relación como la correspondencia que hay entre TODOS o ALGUNOS del primer conjunto con UNO o MÁS del segundo conjunto.
Definición matemática de Relación y de Función
En matemática, Relación es la correspondencia de un primer conjunto, llamado dominio, con un segundo conjunto, llamado recorrido o rango, de manera que a cada elemento del Dominio le corresponde uno o más elementos del Recorrido o Rango.
Por su parte, una función es una relación a la cual se añade la condición de que a cada valor del Dominio le corresponde uno y sólo un valor del Recorrido.
De las definiciones anteriores podemos deducir que todas las funciones son relaciones, pero no todas las relaciones son funciones.
También debemos agregar que toda ecuación es una Relación, pero no toda ecuación es una Función.
Todas las Relaciones pueden ser graficadas en el Plano Cartesiano.
Ver: Plano Cartesiano
Dados dos conjuntos A y B una relación definida de A en B es un conjunto de parejas ordenadas (par ordenado) que hacen verdadera una proposición; dicho de otro modo, una relación es cualquier subconjunto del producto cartesiano A x B
Ejemplo 1.
Si A = {2, 3} y B = {1, 4, 5}, encontrar tres relaciones definidas de A en B.
Solución
El producto cartesiano de A x B está conformado por las siguientes parejas o pares ordenados:
A x B = {(2, 1), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5)}
Y cada uno de los siguientes conjuntos corresponde a relaciones definidas de A en B:
R1 = {(2, 1), (3, 1)}
R2 = {(2, 4), (2, 5), (3, 4), (3, 5)}
R3 = {(2, 4), (3, 5)}
La relación R1 se puede definir como el conjunto de pares cuyo segundo elemento es 1, esto es, R1 = {(x, y) / y = 1}.
La relación R2 está formada por los pares cuyo primer componente es menor que el segundo componente, R2 = {(x, y) / x < y}
Y la relación R3 está conformada por todos los pares que cumplen con que el segundo componente es dos unidades mayor que el primer componente, dicho de otro modo, R3 = {(x, y) / y = x + 2}
Así, se puede continuar enumerando relaciones definidas a partir de A x B. Como se puede ver, la regla que define la relación se puede escribir mediante ecuaciones o desigualdades que relacionan los valores de x e y. Estas reglas son un medio conveniente para ordenar en pares los elementos de los dos conjuntos.
Ejemplo 2.
Dados los conjuntos C = {1, –3} y D = {2, 3, 6}, encontrar todos los pares ordenados
...