Algebra. 10 CASOS DE FACTORIZACION
Enviado por Miguelitronica • 11 de Febrero de 2019 • Tarea • 3.250 Palabras (13 Páginas) • 542 Visitas
10 CASOS DE FACTORIZACION
FACTORIZACION
Es una técnica que consiste en la descripción de una expresión matemática (que puede ser un número, una suma, una matriz, un polinomio, etc.) en forma de producto.
Existen diferentes métodos de factorización, dependiendo de los objetos matemáticos estudiados; el objetivo es simplificar una expresión o reescribirla en términos de «bloques fundamentales», que recibe el nombre de factores, como por ejemplo un número en números primos, o un polinomio en polinomios irreducibles.
FACTORES
Se llama factores o divisores de una expresión algebraica a las expresiones algebraicas que multiplicadas entre si dan como producto la primera expresión.
Ejemplo:
a(a + b) = a2 + ab
(x + 2) (x +3) = x2 + 5x + 6
(m + n) (m- n) = m2 - mn - n2
CASOS DE FACTORIZACION
CASO I
CUANDO TODOS LOS TERMINOS DE UN POLINOMIO TIENEN UN FACTOR COMUN
Factor Común Monomio:
Ejemplo 1:
14x2 y2 - 28x3 + 56x4
R: 14x2 (y2 - 2x + 4x2)
Ejemplo 2:
X3 + x5 – x7 = R: x3 (1 + x2 - x4)
Ejemplo 3:
100a2 b3c –150ab2c2 + 50 ab3c3 - 200abc2=
R: 50abc (2ab2 – 3bc +b2c2 – 4c)
Factor Común Polinomio:
Ejemplo 1:
a(x + 1) + b(x + 1)
R: (x + 1) (a +b)
Ejemplo 2:
(3x + 2) (x + y – z) – (3x + 2) - (x + y – 1)( 3x +2)
R: (3x + 2) (x + y – z) – (3x + 2)(1) – ( x - y +1)( 3x +2)
(3x + 2) (x + y – z -1 –x - y + 1)
-z ( 3x +2)
Ejemplo 3:
(a + b -1) (a 2 + 1) – a2 – 1
R: ( a + b -1) (a 2 + 1) –( a2 + 1)
( a2 + 1)(a + b - 1)-1
( a2 + 1)(a + b -1 -1)
( a2 + 1)(a + b -2)
CASO II
FACTOR COMUN POR AGRUPACION DE TERMINO
Ejemplo 1:
a2 + ab + ax + bx
(a2 + ab) + (ax + b)
a(a + b) + x(a +b)
(a + b) (a +x)
Ejemplo 2:
4am3 – 12 amn – m2 + 3n
= (4am3 – 12amn) – (m2 + 3n)
=4am (m2 – 3n) – (m2 + 3n)
R: (m2 – 3n)(4am-1)
Ejemplo 3:
a2b3 – n4 + a2b3x2 – n4x2 – 3a3b3x + 3n4x
= (a2b3 – n4 + a2b3x2 – n4x2 – 3a3b3x + 3n4x)
= (a2b3 + a2b3x2 – 3a2b3x) – (n4 + n4x2 - 3n4x)
= a2b3 (1 + x2 – 3x)- n4 (1 + x2 -3x)
R: (1 + x2 – 3x) (a2b3 - n4 )
CASO III
TRINOMIO CUADRADO PERFECTO
Ejemplo 1;
a2 – 2ab + b2
Raíz cuadrada de a2 = a
Raíz cuadrada de b2 = b
Doble producto sus raíces
(2 X a X b) 2ab (cumple)
R: (a – b) 2
Ejemplo 2:
49m 6– 70 am3n2 + 25 a2n4
Raíz cuadrada de 49m6 = 7m3
Raíz cuadrada de 25a2n4 = 5an2
Doble producto sus raíces
(2 X 7m3 X 5a2n2) = 70am3 n2 (cumple)
R: (7m – 5an2)
Ejemplo 3:
9b2 – 30 ab + 25a2
Raíz cuadrada de 9b2 = 3b
Raíz cuadrada de 25 a2= 5a
Doble producto sus raíces
(2 X 3b X 5a) = 30ab (cumple)
R: (3b - 5a) 2
CASO ESPECIAL
Ejemplo 1:
a2 + 2a (a – b) + (a – b) 2
Raíz cuadrada de a2 = a
Raíz cuadrada de (a – b) 2 = (a – b)
...