ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Estadistica


Enviado por   •  20 de Junio de 2015  •  2.428 Palabras (10 Páginas)  •  163 Visitas

Página 1 de 10

La estadística descriptiva es una gran parte de la estadística que se dedica a recolectar, ordenar, analizar y representar un conjunto de datos, con el fin de describir apropiadamente las características de este. Este análisis es muy básico. Aunque hay tendencia a generalizar a toda la población, las primeras conclusiones obtenidas tras un análisis descriptivo, es un estudio calculando una serie de medidas de tendencia central, para ver en qué medida los datos se agrupan o dispersan en torno a un valor central. DATOS AGRUPADOS:

Aunque las medidas de tendencia central y de dispersión calculadas a partir de una tabla de distribución de frecuencia no son tan precisas como las calculadas con los datos originales, y en ocasiones no se cuenta con éstos o es impráctico procesarlos, por lo que deben aplicarse las fórmulas aproximadas correspondientes a la medida que se desee, utilizando los datos de una tabla de distribución en frecuencias.

Media, mediana y moda.

La media, la mediana y la moda de datos agrupados son los mismos conceptos que cuando se aplican a datos individuales, aunque su cálculo es más complejo y su exactitud es sólo aproximada en comparación con el cálculo basado en los datos individuales.

Aplicación de la media aritmética.

TRATAMIENTO PARA DATOS NO AGRUPADOS.

¿A qué se refiere esto? Cuando la muestra que se ha tomado de la población o proceso que se desea analizar, es decir, tenemos menos de 20 elementos en la muestra, entonces estos datos son analizados sin necesidad de formar clases con ellos y a esto es a lo que se le llama tratamiento de datos no agrupados.

Por otro lado se les llama medidas de tendencia central a la media aritmética, la mediana, la media geométrica, la moda, etc. debido a que al observar la distribución de los datos, estas tienden a estar localizadas generalmente en su parte central.. la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los sucesos, cada uno de los sucesos es el rango de valores de la variable aleatoria.

La distribución de probabilidad está completamente especificada por la función de distribución, cuyo valor en cada x real es la probabilidad de que la variable aleatoria sea menor o igual que x.

DISTRIBUCIONES DISCRETAS.. son aquellas en las que la variable puede pude tomar un número determinado de valores:

Ejemplo: si se lanza una moneda al aire puede salir cara o cruz; si se tira un dado puede salir un número de 1 al 6; en una ruleta el número puede tomar un valor del 1 al 32.

Las distribuciones continuas son aquellas que presentan un número infinito de posibles soluciones:

Ejemplo: El peso medio de los alumnos de una clase puede tomar infinitos valores dentro de cierto intervalo (42,37 kg, 42,3764 kg, 42,376541kg, etc); la esperanza media de vida de una población (72,5 años, 72,513 años, 72,51234 años).

Vamos a comenzar por estudiar las principales distribuciones discretas.

Distribuciones discretas: Bernouilli

Es aquel modelo que sigue un experimento que se realiza una sola vez y que puede tener dos soluciones: acierto o fracaso:

la distribución multinomial.. es una generalización de la distribución binomial.

La distribución binomial es la probabilidad de un número de éxitos en N sucesos de Bernoulli independientes, con la misma probabilidad de éxito en cada suceso. En una distribución multinomial, el análogo a la distribución de Bernoulli es la distribución categórica, donde cada suceso concluye en únicamente un resultado de un número finito K de los posibles, con probabilidades (tal que para i entre 1 y K y ); y con n sucesos independientes.

la distribución binomial… es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en unadistribución de Bernoulli.

Para representar que una variable aleatoria X sigue una distribución binomial de parámetros n y p, se escribe:

Distribución hipergeométrica… es una distribución discreta relacionada con muestreos aleatorios y sin reemplazo. Supóngase que se tiene una población de N elementos de los cuales, d pertenecen a la categoría A y N-d a la B. La distribución hipergeométrica mide la probabilidad de obtener x ( ) elementos de la categoría A en una muestra sin reemplazo de n elementos de la población original. distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad de que ocurra un determinado número de eventos durante cierto período de tiempo. Concretamente, se especializa en la probabilidad de ocurrencia de sucesos con probabilidades muy pequeñas, o sucesos "raros".

APROXIMACION DE LA BINOMIAL A LA POISSON… Suponga que se desea encontrar la función de probabilidad de la variable aleatoria X que indica número de accidentes ocurridos en una semana.

El período de una semana se puede dividir en n sub - intervalos, cada uno tan pequeño que podría ocurrir en él a lo más un accidente. Entonces:

La probabilidad de que ocurra un accidente en un sub - intervalo es P

La probabilidad de que no ocurra ningún accidente en un sub - intervalo es 1 - P

La probabilidad de

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com