INFERENCIA ACERCA DE LA MEDIA Y VARIANZA DE UN DISTRIBUCIÓN
alucas1 de Noviembre de 2012
2.939 Palabras (12 Páginas)799 Visitas
INFERENCIA ACERCA DE LA MEDIA Y VARIANZA DE UN DISTRIBUCIÓN
TEORIA DE PEQUEÑAS MUESTRAS O TEORIA EXACTA DEL MUESTREO
En las unidades anteriores se manejó el uso de la distribución z, la cual se podía utilizar siempre y cuando los tamaños de las muestras fueran mayores o iguales a 30 ó en muestras más pequeñas si la distribución o las distribuciones de donde proviene la muestra o las muestras son normales.
En esta unidad se podrán utilizar muestras pequeñas siempre y cuando la distribución de donde proviene la muestra tenga un comportamiento normal. Esta es una condición para utilizar las tres distribuciones que se manejarán en esta unidad; t de student, X2 ji-cuadrada y Fisher.
A la teoría de pequeñas muestras también se le llama teoría exacta del muestreo, ya que también la podemos utilizar con muestras aleatorias de tamaño grande.
En esta unidad se verá un nuevo concepto necesario para poder utilizar a las tres distribuciones mencionadas. Este concepto es "grados de libertad".
Para definir grados de libertad se hará referencia a la varianza muestral:
Esta fórmula está basada en n-1 grados de libertad (degrees of freedom). Esta terminología resulta del hecho de que si bien s2 está basada en n cantidades . . . , éstas suman cero, así que especificar los valores de cualquier n-1 de las cantidades determina el valor restante. Por ejemplo, si n=4 y
; y , entonces automáticamente tenemos , así que sólo tres de los cuatro valores de están libremen te determinamos 3 grados de libertad.
Entonces, en esta unidad la fórmula de grados de libertad será n-1 y su simbología
DISTRIBUCION "t DE STUDENT"
Supóngase que se toma una muestra de una población normal con media y varianza Si es el promedio de las n observaciones que contiene la muestra aleatoria, entonces la distribución es una distribución normal estándar. Supóngase que la varianza de la población es desconocida. ¿Qué sucede con la distribución de esta estadística si se reemplaza por s? La distribución t proporciona la respuesta a esta pregunta.
La media y la varianza de la distribución t son y para >2, respectivamente.
La siguiente figura presenta la gráfica de varias distribuciones t. La apariencia general de la distribución t es similar a la de la distribución normal estándar: ambas son simétricas y unimodales, y el valor máximo de la ordenada se alcanza en la media Sin embargo, la distribución t tiene colas más amplias que la normal; esto es, la probabilidad de las colas es mayor que en la distribución normal. A medida que el número de grados de libertad tiende a infinito, la forma límite de la distribución t es la distribución normal estándar.
Propiedades de las distribuciones t
1. Cada curva t tiene forma de campana con centro en 0.
2. Cada curva t, está más dispersa que la curva normal estándar z.
3. A medida que aumenta, la dispersión de la curva t correspondiente disminuye.
4. A medida que , la secuencia de curvas t se aproxima a la curva normal estándar, por lo que la curva z recibe a veces el nombre de curva t con gl =
La distribución de la variable aleatoria t está dada por:
Esta se conoce como la distribución t con grados de libertad.
Sean X1, X2, . . . , Xn variables aleatorias independientes que son todas normales con media y desviación estándar . Entonces la variable aleatoria tiene una distribución t con = n-1 grados de libertad.
La distribución de probabilidad de t se publicó por primera vez en 1908 en un artículo de W. S. Gosset. En esa época, Gosset era empleado de una cervecería irlandesa que desaprobaba la publicación de investigaciones de sus empleados. Para evadir esta prohibición, publicó su trabajo en secreto bajo el nombre de "Student". En consecuencia, la distribución t normalmente se llama distribución t de Student, o simplemente distribución t. Para derivar la ecuación de esta distribución, Gosset supone que las muestras se seleccionan de una población normal. Aunque esto parecería una suposición muy restrictiva, se puede mostrar que las poblaciones no normales que poseen distribuciones en forma casi de campana aún proporcionan valores de t que se aproximan muy de cerca a la distribución t.
La distribución t difiere de la de Z en que la varianza de t depende del tamaño de la muestra y siempre es mayor a uno. Unicamente cuando el tamaño de la muestra tiende a infinito las dos distribuciones serán las mismas.
Se acostumbra representar con el valor t por arriba del cual se encuentra un área igual a . Como la distribución t es simétrica alrededor de una media de cero, tenemos ; es decir, el valor t que deja un área de a la derecha y por tanto un área de a la izquierda, es igual al valor t negativo que deja un área de en la cola derecha de la distribución. Esto es, t0.95 = -t0.05, t0.99=-t0.01, etc.
Para encontrar los valores de t se utilizará la tabla de valores críticos de la distribución t del libro Probabilidad y Estadística para Ingenieros de los autores Walpole, Myers y Myers.
Ejemplo:
El valor t con = 14 grados de libertad que deja un área de 0.025 a la izquierda, y por tanto un área de 0.975 a la derecha, es
t0.975=-t0.025 = -2.145
Si se observa la tabla, el área sombreada de la curva es de la cola derecha, es por esto que se tiene que hacer la resta de . La manera de encontrar el valor de t es buscar el valor de en el primer renglón de la tabla y luego buscar los grados de libertad en la primer columna y donde se intercepten y se obtendrá el valor de t.
Ejemplo:
Encuentre la probabilidad de –t0.025 < t < t0.05.
Solución:
Como t0.05 deja un área de 0.05 a la derecha, y –t0.025 deja un área de 0.025 a la izquierda, encontramos un área total de 1-0.05-0.025 = 0.925.
P( –t0.025 < t < t0.05) = 0.925
Ejemplo:
Encuentre k tal que P(k < t < -1.761) = 0.045, para una muestra aleatoria de tamaño 15 que se selecciona de una distribución normal.
Solución:
Si se busca en la tabla el valor de t =1.761 con 14 grados de libertad nos damos cuenta que a este valor le corresponde un área de 0.05 a la izquierda, por ser negativo el valor. Entonces si se resta 0.05 y 0.045 se tiene un valor de 0.005, que equivale a Luego se busca el valor de 0.005 en el primer renglón con 14 grados de libertad y se obtiene un valor de t = 2.977, pero como el valor de está en el extremo izquierdo de la curva entonces la respuesta es t = -2.977 por lo tanto:
P(-2.977 < t < -1.761) = 0.045
Prueba de hipotesis
Tenemos que empezar por definir que es una hipótesis y que es prueba de hipótesis.
Hipótesis es una aseveración de una población elaborado con el propósito de poner aprueba, para verificar si la afirmación es razonable se usan datos.
En el análisis estadístico se hace una aseveración, es decir, se plantea una hipótesis, después se hacen las pruebas para verificar la aseveración o para determinar que no es verdadera.
Por tanto, la prueba de hipótesis es un procedimiento basado en la evidencia muestral y la teoría de probabilidad; se emplea para determinar si la hipótesis es una afirmación razonable.
Prueba de una hipótesis: se realiza mediante un procedimiento sistemático de cinco paso:
Siguiendo este procedimiento sistemático, al llegar al paso cinco se puede o no rechazar la hipótesis, pero debemos de tener cuidado con esta determinación ya que en la consideración de estadística no proporciona evidencia de que algo sea verdadero. Esta prueba aporta una clase de prueba más allá de una duda razonable. Analizaremos cada paso en detalle
Objetivo de la prueba de hipótesis.
El propósito de la prueba de hipótesis no es cuestionar el valor calculado del estadístico (muestral), sino hacer
un juicio con respecto a la diferencia entre estadístico de muestra y un valor planteado del parámetro.
Nivel de Significancia
Plantear la hipótesis nula Ho y la hipótesis alternativa H1.
Cualquier investigación estadística implica la existencia de hipótesis o afirmaciones acerca de las poblaciones que se estudian.
La hipótesis nula (Ho) se refiere siempre a un valor especificado del parámetro de población, no a una estadística de muestra. La letra H significa hipótesis y el subíndice cero no hay diferencia. Por lo general hay un "no" en la hipótesis nula que indica que "no hay cambio" Podemos rechazar o aceptar Ho.
La hipótesis nula es una afirmación que no se rechaza a menos que los datos maestrales proporcionen evidencia convincente de que es falsa. El planteamiento de la hipótesis nula siempre contiene un signo de igualdad con respecto al valor especificado del parámetro.
La hipótesis alternativa (H1) es cualquier hipótesis que difiera de la hipótesis nula. Es una afirmación que se acepta si los datos maestrales proporcionan evidencia suficiente de que la hipótesis nula es falsa. Se le conoce también como la hipótesis de investigación. El planteamiento de la hipótesis alternativa nunca contiene un signo de igualdad con respecto al valor especificado del parámetro.
...