Teorema de Stokes Calculo
Enviado por Carlos Berton Neumann • 12 de Mayo de 2022 • Resumen • 817 Palabras (4 Páginas) • 91 Visitas
[pic 1]
TEOREMA DE STOKES
Sean S, [pic 2], n como antes indicadas y sea F=Mi+Nj+Pk un campo vectorial en el que M, N, P tienen derivadas de primer orden continuas en S y su frontera [pic 3]. Si T designa el vector tangente unitario de [pic 4], entonces:
[pic 5]
Ejemplos
1) Verifique el teorema F=yi – xj+yzk, si S es el paraboloide z=x2 +y2 , con el círculo x2 +y2 =1, z=1 y su frontera.
X=cost, y=sent, z=1
[pic 6]
Rot F=zi+0 – 2k
[pic 7]
Solución:
- Sea Z=f(x1,x2,…,xn), el rotor es un campo vectorial
F(x,y,z)=M(x,y,z)i+N(x,y,z)j+P(x,y,z)k, entonces:
ROT F=[pic 8][pic 9]
[pic 10]
F=yi – xj+yzk
[pic 11][pic 12][pic 13][pic 14]
Rot F=[pic 15][pic 16][pic 17][pic 18][pic 19]
- El vector n [pic 20][pic 21][pic 22][pic 23][pic 24][pic 25]
[pic 26][pic 27]
. n= (-2x , -2y, 1)
- (Rot F ) . n= (z , 0 , -2) . ( -2x , -2y,1) = -2xz +0 -2
- [pic 28]
[pic 29]
[pic 30][pic 31][pic 32]
[pic 33][pic 34]
[pic 35]
[pic 36]
Sabemos que x= r cos , y =r sen 🡺 0 ≤ r ≤ 1 . 0 ≤ ≤ 2[pic 37][pic 38][pic 39][pic 40]
[pic 41][pic 42][pic 43][pic 44]
[pic 45][pic 46][pic 47]
[pic 48][pic 49]
[pic 50]
[pic 51]
[pic 52]
[pic 53][pic 54]
[pic 55][pic 56]
[pic 57]
[pic 58][pic 59]
[pic 60][pic 61][pic 62][pic 63]
[pic 64]
[pic 65]
[pic 66][pic 67][pic 68][pic 69][pic 70][pic 71]
[pic 72][pic 73]
[pic 74][pic 75][pic 76][pic 77][pic 78][pic 79]
[pic 80][pic 81]
[pic 82][pic 83]
[pic 84][pic 85][pic 86]
[pic 87][pic 88]
- Grafico y restricciones [pic 89][pic 90][pic 91]
[pic 92][pic 93][pic 94][pic 95]
[pic 96][pic 97][pic 98]
[pic 99][pic 100][pic 101][pic 102]
[pic 103][pic 104][pic 105]
[pic 106][pic 107][pic 108]
[pic 109][pic 110]
[pic 111][pic 112][pic 113]
[pic 114][pic 115][pic 116][pic 117]
[pic 118][pic 119]
- ROT F=[pic 120][pic 121]
F(x,y,z)=(x-z)i+(y-z)j+x2k
Rot F= (0 –(0-1))i + (0-1-2x)j + (0 -0)k= (1 , -1-2x , 0)
...