ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Calculo Teorema De L Hopital


Enviado por   •  1 de Septiembre de 2013  •  689 Palabras (3 Páginas)  •  635 Visitas

Página 1 de 3

El teorema de l'Hôpital

Guillaume François Antoine, marqués de l'Hôpital (París, 1661 – París, 2 de febrero de 1704) fue un matemático francés. El logro más conocido atribuido a su nombre es el descubrimiento de la Regla de L'Hôpital, que se emplea para calcular el valor límite de una fracción donde numerador y denominador tienden a cero o ambos tienden a infinito.

L'Hôpital se escribe comúnmente como "L'Hospital" o "L'Hôpital." Él escribía su nombre con una 's'; Sin embargo, el idioma francés ha omitido desde entonces la 's' (que era muda) y añadió el acento circunflejo a la vocal precedente.

L'Hôpital nació en París (Francia). Inicialmente planeó una carrera militar, pero su pobre visión le obligó a cambiar a las matemáticas. Resolvió el problema de la braquistócrona, independientemente de otros matemáticos contemporáneos, como Isaac Newton. Murió en París.

Es también el autor del primer libro de texto conocido sobre cálculo diferencial, L'Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes (Análisis de los infinitamente pequeños para el entendimiento de las líneas curvas). Publicado en 1696, el texto incluye las clases de su profesor, Johann Bernoulli, en donde Bernoulli discute la indeterminación 0/0. Este es el método para resolver estas indeterminaciones a través de derivadas sucesivas que lleva su nombre.

En 1694 Bernoulli y l'Hôpital acordaron que l'Hôpital le pagaría trescientos francos anuales para que le transmitiera sus descubrimientos, que l'Hôpital describiría en su libro. En 1704, tras la muerte de l'Hôpital, Bernoulli reveló la existencia del trato, asegurando que la mayoría de los descubrimientos que aparecían en el libro de l'Hôpital's eran suyos. En 1922 se encontraron documentos que apoyaban la tesis de Bernoulli. La creencia generalizada de que l'Hôpital trató de aprovecharse del descubrimiento de la regla que lleva su nombre ha resultado falsa. Publicó su libro anónimamente, agradeciendo la ayuda prestada por Bernoulli en la introducción, y nunca dijo ser el descubridor de la regla.

Regla de l'Hôpital

En matemática, más específicamente en el cálculo infinitesimal, la regla de l'Hôpital o regla de l'Hôpital-Bernoulli1 es utilizada para determinar límites que de otra manera sería complicado calcular. La regla dice que, dadas dos funciones f(x) y g(x) continuas y derivables en x = c, si f(x) y g(x) tienden ambas a cero cuando x tiende a c, entonces el límite cuando x tiende a c del cociente de f(x) y g(x) es igual al límite cuando x tiende a c del cociente de las derivadas de f(x) y g(x), siempre que este límite exista (c puede ser finito o infinito):

Esta regla recibe su nombre en honor al matemático francés del siglo

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com