Propiedades De Los Numeros Reales
Enviado por elrotten • 30 de Enero de 2013 • 375 Palabras (2 Páginas) • 734 Visitas
¿CUALES SON LAS PROPIEDADES DE TRICOTOMIA, TRANSITIVIDAD, DENSIDAD Y AXIOMA DE LOS NUMEROS REALES? GRACIAS!?
hace 3 años Reportar abusos
javier l
Mejor respuesta - elegida por los votantes
la propiedad de tricotomia es la que garantiza tres posibilidades dentro de los numeros reales
a<b o b<a o a=b
la transitividad nos dice que siendo a,b,c numeros reales, si a=b y b=c entonces a=c asi mismo se garantiza para los axiomas de orden siendo a,b,c numeros reales se tiene que si a<b y b<c entonces a<c
los axiomas de los numeros relaes son prepociciones que se toman como verdaderas y son las siguientes:
Axioma 1 Cerradura
Si a y b están en R entonces a+b y a*b son números determinados en forma única que están también en R.
Axioma 2 Propiedad Conmutativa (Suma y Multiplicación)
Si a y b están en R entonces a+b = b+a y a*b = b*a.
Axioma 3 Propiedad Asociativa. (Suma y Multiplicación)
Si a, b y c están en R entonces a+(b+c) = (a+b)+c y a*(b*c) = (a*b)*c
Axioma 4 Propiedad Distributiva.
Si a, b y c están en R entonces a*(b+c) = ab+ac
Axioma 5 Existencia de Elementos neutros.
R contiene dos números distintos 0 y 1 tales que a+0 = a, a*1 = a para a que pertenece a los reales.
Axioma 6 Elementos inversos Si a está en R entonces existe un (-a) en R tal que a + (-a) = 0 Si a está en R y a es diferente de 0 entonces existe un elemento 1/a en R tal que a*(1/a) = 1.
[+ El inverso multimplicativo de a también se representa por {$ a^{−1} $}
El primer axioma garantiza que la suma y la multiplicación son operaciones binarias en los números reales. Los axiomas 2 al 4 indican la forma de manipular algebraicamente las dos operaciones. El axioma 5 establece la existencia de dos elementos distintos 0 y 1. Y el último axioma indica la existencia de los elementos inverso por lo que los números reales forman un campo, nótese que en la segunda parte de este último axioma se supone diferente de cero el número a.
También es fácil ver que combinando el axioma 2 con los axiomas 5 y 6 tenemos:
0 + a = 0
1.a = a
(-a) + a = 0
(1/a)*a = 1
...