ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Adminstracion Financuiera D


Enviado por   •  25 de Noviembre de 2013  •  1.060 Palabras (5 Páginas)  •  253 Visitas

Página 1 de 5

ALUMNO: JOSÈ DANIEL FLORES NEGRETE

No CONTROL: 12580910

Materia: Estadística Administrativa

Profesor: Juan Gerardo Pérez Magaña

Nombre del Trabajo: Ejemplos de regresión lineal

Fuentes de Información:

http://estadisticaejemplosyejercicios.blogspot.mx/2012/05/regresion-lineal-simple.html

http://www.slideshare.net/lexoruiz/regresin-lineal-y-correlacin

INTRODUCCIÓN

Si sabemos que existe una relación entre una variable denominada dependiente y otras denominadas independientes (como por ejemplo las existentes entre: la experiencia profesional de los trabajadores y sus respectivos sueldos, las estaturas y pesos de personas, la producción agraria y la cantidad de fertilizantes utilizados, etc.), puede darse el problema de que la dependiente asuma múltiples valores para una combinación de valores de las independientes.

La dependencia a la que hacemos referencia es relacional matemática y no necesariamente de causalidad. Así, para un mismo número de unidades producidas, pueden existir niveles de costo, que varían empresa a empresa.

Si se da ese tipo de relaciones, se suele recurrir a los estudios de regresión en los cuales se obtiene una nueva relación pero de un tipo especial denominado función, en la cual la variable independiente se asocia con un indicador de tendencia central de la variable dependiente. Cabe recordar que en términos generales, una función es un tipo de relación en la cual para cada valor de la variable independiente le corresponde uno y sólo un valor de la variable dependiente.

REGRESIÓN SIMPLE Y CORRELACIÓN

La Regresión y la correlación son dos técnicas estadísticas que se pueden utilizar para solucionar problemas comunes en los negocios.

Muchos estudios se basan en la creencia de que es posible identificar y cuantificar alguna Relación Funcional entre dos o más variables, donde una variable depende de la otra variable.

Se puede decir que Y depende de X, en donde Y y X son dos variables cualquiera en un modelo de Regresión Simple.

"Y es una función de X"

Y = f(X)

Como Y depende de X,

Y es la variable dependiente, y

X es la variable independiente.

En el Modelo de Regresión es muy importante identificar cuál es la variable dependiente y cuál es la variable independiente.

En el Modelo de Regresión Simple se establece que Y es una función de sólo una variable independiente, razón por la cual se le denomina también Regresión Desvariada porque sólo hay dos variables, una dependiente y otra independiente y se representa así:

Y = f (X)

"Y está regresando por X"

La variable dependiente es la variable que se desea explicar, predecir. También se le llama REGRESANDO ó VARIABLE DE RESPUESTA.

La variable Independiente X se le denomina VARIABLE EXPLICATIVA ó REGRESOR y se le utiliza para EXPLICAR Y.

ANÁLISIS ESTADÍSTICO: REGRESIÓN LINEAL SIMPLE

En el estudio de la relación funcional entre dos variables poblacionales, una variable X, llamada independiente, explicativa o de predicción y una variable Y, llamada dependiente o variable respuesta, presenta la siguiente notación:

Y = a + b X + e

Dónde:

a es el valor de la ordenada donde la línea de regresión se intercepta con el eje Y.

b es el coeficiente de regresión poblacional (pendiente de la línea recta)

He es el error

SUPOSICIONES DE LA REGRESIÓN LINEAL

1. Los valores de la variable independiente X son fijos, medidos sin error.

2. La variable Y es aleatoria

3. Para cada valor de X, existe una distribución normal de valores de Y (subpoblaciones Y)

4. Las variancias de las subpoblaciones Y son todas iguales.

5. Todas las medias de las subpoblaciones de Y están sobre la recta.

6. Los valores de Y están normalmente distribuidos y son estadísticamente independientes.

ESTIMACIÓN DE LA ECUACIÓN DE REGRESIÓN MUESTRAL

Consiste en determinar los valores de "a" y "b " a partir de la muestra, es decir, encontrar los valores de a y b con los datos observados de la muestra. El método de estimación es el de Mínimos Cuadrados, mediante el cual se obtiene:

Luego, la ecuación de regresión muestra estimada es

Que se interpreta como:

a es

...

Descargar como (para miembros actualizados) txt (8 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com