Simulacion De Monte Carlo
Enviado por kuik • 13 de Mayo de 2013 • 3.089 Palabras (13 Páginas) • 604 Visitas
Simulación de Monte Carlo con Excel
Javier Faulín
ffaulin@uoc.edu
Ángel A. Juan
ajuanp@uoc.edu
Resumen
El trabajo presenta a la simulación de Monte Carlo como técnica cuantitativa que hace uso de la estadística y cuáles son los procesos en los ordenadores para imitar, mediante modelos matemáticos, el comportamiento aleatorio de sistemas reales no dinámicos. Concretamente haciendo uso de la planilla de cálculo de Microsoft Excel, se describe cómo es posible obtener un número pseudo-aleatorio -proveniente de una distribución uniforme entre el 0 y el 1- usando la función ALEATORIO. Avanzando en ejemplos mas complejos se construyen modelos de simulación Monte Carlo cuando las variables aleatorias son discretas o continuas.
Palabras Clave: simulación, Monte Carlo, comportamiento aleatorio o probabilístico, número pseudo-aleatorio.
1.- Introducción
La simulación de Monte Carlo es una técnica que combina conceptos estadísticos (muestreo aleatorio) con la capacidad que tienen los ordenadores para generar números pseudo-aleatorios y automatizar cálculos.
Los orígenes de esta técnica están ligados al trabajo desarrollado por Stan Ulam y John Von Neumann a finales de los 40 en el laboratorio de Los Alamos, cuando investigaban el movimiento aleatorio de los neutrones [W1]. En años posteriores, la simulación de Monte Carlo se ha venido aplicando a una infinidad de ámbitos como alternativa a los modelos matemáticos exactos o incluso como único medio de estimar soluciones para problemas complejos. Así, en la actualidad es posible encontrar modelos que hacen uso de simulación Monte Carlo en las áreas informática, empresarial, económica, industrial e incluso social [5, 8]. En otras palabras, la simulación de Monte Carlo está presente en todos aquellos ámbitos en los que el comportamiento aleatorio o probabilístico desempeña un papel fundamental -precisamente, el nombre de Monte Carlo proviene de la famosa ciudad de Mónaco, donde abundan los casinos de juego y donde el azar, la probabilidad y el comportamiento aleatorio conforman todo un estilo de vida.
Son muchos los autores que han apostado por utilizar hojas de cálculo para realizar simulación Monte Carlo [1, 6, 7]. La potencia de las hojas de cálculo reside en su universalidad, en su facilidad de uso, en su capacidad para recalcular valores y, sobre todo, en las posibilidades que ofrece con respecto al análisis de escenarios (“what-if anaylisis”). Las últimas versiones de Excel incorporan, además, un lenguaje de programación propio, el Visual Basic for Applications, con el cual es posible crear auténticas aplicaciones de simulación destinadas al usuario final. En el mercado existen de hecho varios complementos de Excel (Add-Ins) específicamente diseñados para realizar simulación Monte Carlo, siendo los más conocidos: @Risk, Crystall Ball, Insight.xla, SimTools.xla, etc. [W2 – W5].
Conceptos fundamentales
La función ALEATORIO() de Excel
Las hojas de cálculo como Excel (y cualquier lenguaje de programación estándar) son capaces de generar números pseudo-aleatorios provenientes de una distribución uniforme entre el 0 y el 1. Este tipo de números pseudo-aleatorios son los elementos básicos a partir de los cuales se desarrolla cualquier simulación por ordenador. En Excel, es posible obtener un número pseudo-aleatorio -proveniente de una distribución uniforme entre el 0 y el 1- usando la función ALEATORIO:
Los números generados mediante la función ALEATORIO tienen dos propiedades que los hacen equiparables a números completamente aleatorios:
1.Cada vez que se usa la función ALEATORIO, cualquier número real entre 0 y 1 tiene la misma probabilidad de ser generado (de ahí el nombre de distribución uniforme).
2. Los diferentes números generados son estadísticamente independientes unos de otros (es decir, el valor del número generado en un momento dado no depende de los generados con anterioridad).
La función ALEATORIO es una función volátil de Excel. Esto significa que cada vez que pulsamos la tecla F9 o cambiemos alguno de los inputs del modelo, todas las celdas donde aparezca la función ALEATORIO serán recalculadas de forma automática.
Se pueden encontrar ejemplos del uso de ALEATORIO en el propio menú de ayuda de Excel.
¿Qué es la simulación de Monte Carlo?
La simulación de Monte Carlo es una técnica cuantitativa que hace uso de la estadística y los ordenadores para imitar, mediante modelos matemáticos, el comportamiento aleatorio de sistemas reales no dinámicos (por lo general, cuando se trata de sistemas cuyo estado va cambiando con el paso del tiempo, se recurre bien a la simulación de eventos discretos o bien a la simulación de sistemas continuos).
La clave de la simulación Monte Carlo consiste en crear un modelo matemático del sistema, proceso o actividad que se quiere analizar, identificando aquellas variables (inputs del modelo) cuyo comportamiento aleatorio determina el comportamiento global del sistema. Una vez identificados dichos inputs o variables aleatorias, se lleva a cabo un experimento consistente en (1) generar – con ayuda del ordenador-muestras aleatorias (valores concretos) para dichos inputs, y (2) analizar el comportamiento del sistema ante los valores generados. Tras repetir n veces este experimento, dispondremos de n observaciones sobre el comportamiento del sistema, lo cual nos será de utilidad para entender el funcionamiento del mismo –obviamente, nuestro análisis será tanto más preciso cuanto mayor sea el número n de experimentos que llevemos a cabo.
Veamos un ejemplo sencillo:
En la imagen inferior se muestra un análisis histórico de 200 días sobre el número de consultas diarias realizadas a un sistema de información empresarial (EIS) residente en un servidor central. La tabla incluye el número de consultas diarias (0 a 5) junto con las frecuencias absolutas (número de días que se producen 0, 1, ..., 5 consultas), las frecuencias relativas (10/200 = 0,05, ...), y las frecuencias relativas acumuladas.
Podemos interpretar la frecuencia relativa como la probabilidad de que ocurra el suceso asociado, en este caso, la probabilidad de un determinado número de consultas (así, p.e., la probabilidad de que se den 3 consultas en un día sería de 0,30), por lo que la tabla anterior nos proporciona la distribución de probabilidad asociada a una variable aleatoria discreta (la variable aleatoria es el número de consultas al EIS, que sólo puede tomar valores enteros entre 0 y 5).
Supongamos que queremos conocer el número esperado (o medio) de consultas por día. La respuesta a esta pregunta es fácil si recurrimos a
...