Simulacion Monte Carlos
Enviado por hermanodelacalle • 30 de Junio de 2012 • 1.193 Palabras (5 Páginas) • 597 Visitas
Simulación
Monte Carlo
El análisis de riesgo forma parte de todas las decisiones que tomamos. Nos enfrentamos continuamente a la incertidumbre, la ambigüedad y la variabilidad. Y aunque tenemos un acceso a la información sin precedentes, no podemos predecir con precisión el futuro. La simulación Monte Carlo permite ver todos los resultados posibles de las decisiones que tomamos y evaluar el impacto del riesgo, lo cual nos permite tomar mejores decisiones en condiciones de incertidumbre.
¿Qué es la simulación
Monte Carlo?
La simulación Monte Carlo es una técnica matemática computarizada que permite tener en cuenta el riesgo en análisis cuantitativos y tomas de decisiones. Esta técnica es utilizada por profesionales de campos tan dispares como los de finanzas, gestión de proyectos, energía, manufacturación, ingeniería, investigación y desarrollo, seguros, petróleo y gas, transporte y medio ambiente.
La simulación Monte Carlo ofrece a la persona responsable de tomar las decisiones una serie de posibles resultados, así como la probabilidad de que se produzcan según las medidas tomadas. Muestra las posibilidades extremas —los resultados de tomar la medida más arriesgada y la más conservadora— así como todas las posibles consecuencias de las decisiones intermedias.
Los científicos que trabajaron con la bomba atómica utilizaron esta técnica por primera; y le dieron el nombre de Monte Carlo, la ciudad turística de Mónaco conocida por sus casinos. Desde su introducción durante la Segunda Guerra Mundial, la simulación Monte Carlo se ha utilizado para modelar diferentes sistemas físicos y conceptuales.
Cómo funciona la simulación Monte Carlo
La simulación Monte Carlo realiza el análisis de riesgo con la creación de modelos de posibles resultados mediante la sustitución de un rango de valores —una distribución de probabilidad— para cualquier factor con incertidumbre inherente. Luego, calcula los resultados una y otra vez, cada vez usando un grupo diferente de valores aleatorios de las funciones de probabilidad. Dependiendo del número de incertidumbres y de los rangos especificados, para completar una simulación Monte Carlo puede ser necesario realizar miles o decenas de miles de recálculos. La simulación Monte Carlo produce distribuciones de valores de los resultados posibles.
El análisis de riesgo se puede realizar cualitativa y cuantitativamente. El análisis de riesgo cualitativo generalmente incluye la evaluación instintiva o “por corazonada” de una situación, y se caracteriza por afirmaciones como “Eso parece muy arriesgado” o “Probablemente obtendremos buenos resultados”. El análisis de riesgo cuantitativo trata de asignar valores numéricos a los riesgos, utilizando datos empíricos o cuantificando evaluaciones cualitativas. Vamos a concentrarnos en el análisis de riesgo cuantitativo.
Mediante el uso de distribuciones de probabilidad, las variables pueden generar diferentes probabilidades de que se produzcan diferentes resultados. Las distribuciones de probabilidad son una forma mucho más realista de describir la incertidumbre en las variables de un análisis de riesgo. Las distribuciones de probabilidad más comunes son:
Normal – O “curva de campana”. El usuario simplemente define la media o valor esperado y una desviación estándar para describir la variación con respecto a la media. Los valores intermedios cercanos a la media tienen mayor probabilidad de producirse. Es una distribución simétrica y describe muchos fenómenos naturales, como puede ser la estatura de una población. Ejemplos de variables que se pueden describir con distribuciones normales son los índices de inflación y los precios de la energía.
Lognormal – Los valores muestran una clara desviación; no son simétricos como en la distribución normal. Se utiliza para representar valores que no bajan por debajo del cero, pero tienen un potencial positivo ilimitado. Ejemplos de variables
...