El producto cartesiano
Enviado por mayrene2 • 12 de Abril de 2013 • Examen • 1.749 Palabras (7 Páginas) • 334 Visitas
PRODUCTO CARTESIANO
El producto cartesiano de dos conjuntos A x B es el conjunto de todos los pares ordenados que se pueden formar con un elemento perteneciente al conjunto A y un elemento del conjunto B.
Los elementos de A x B son pares ordenados. Cada par que se forma con un elemento del conjunto A y uno del conjunto B, en ese orden y recibe el nombre de par ordenado. Sus elementos se colocan entre paréntesis, separados por coma.
ejemplo n° 1:
ejemplo n° 2:
Si A ={1,2} y B ={-1,O,1} entonces A x B ={(1,-1), (1,0), (1,1), (2,-1), (2,0), (2,1)}. A tiene 2 elementos, B tiene 3, y A x B tiene 2 x 3 = 6
Ejemplo n° 3:
Si A = B = R, entonces R al cuadrado es llamado el plano cartesiano. Las caricaturas y demás objetos bidimensionales viven en R al cuadrado : un círculo no es otra cosa que cierto subconjunto de R al cuadrado (dé un ejemplo). Nosotros, los seres tridimensionales, vivimos en R al cuadrado x R
2-. CONJUNTO CARTESIANO
Es la agrupación en un todo de objetos bien diferenciados en el la mente o en la intuición, por lo tanto, estos objetos son bien determinados y diferenciados.
Ejemplo n° 1:
Este ejemplo gráfico nos muestra la agrupación llamado Alumnos de Colegio con sus elementos que serían: Luis, Antonio, Paula y Pánfilo
3-. RELACION MATEMÁTICA
El concepto de relación implica la idea de correspondencia entre los elementos de dos conjuntos que forman parejas ordenadas.
Cuando se formula una expresión que liga dos o más objetos entre sí, postulamos una relación (no necesariamente matemática) Por ejemplo:
Samuel es padre de Irma. (Samuel, Irma)
Del ejemplo anterior podríamos decir matemáticamente que:
S ---> I
Podemos definir la relación como la correspondencia que hay entre TODOS o ALGUNOS del primer conjunto con UNO o MÁS del segundo conjunto.
Ejemplos de relación
A = {1, 4, 6}
B = {2, 3, 7}
La relación que existe entre A y B es mayor que, por lo que:
ARB={ (6,2) (4,2) (6,3) (4,3)}
4-. TIPOS DE RELACION:
RELACION REFLEJA ( O REFLEXIVA )
R es una relación refleja en un conjunto A no vacío , si y sólo si cada elemento de
él está relacionado consigo mismo:
a ð A ð a R a
Ejemplo:
A = { 1 , 2 , 3 }
R = { ( 1 , 1 ) , ( 1 , 3 ) , ( 2 , 2 ) , ( 3 , 2 ) , ( 3 , 3 ) }
RELACION SIMETRICA
R es una relación simétrica en un conjunto A no vacío , si y sólo si cada par de
elementos de él satisface lo siguiente:
a R b ð b R a
Ejemplo:
A = { 1 , 2 , 3 }
R = { ( 1 , 3 ) , ( 2 , 3 ) , ( 3 , 1 ) , ( 3 , 2 ) , ( 3 , 3 ) }
RELACION ANTISIMETRICA
R es una relación antisimétrica en un conjunto A no vacío , si y sólo si cada par de
elementos de él satisface lo siguiente:
a R b ð b R a ð a = b
Ejemplo:
A = { 1 , 2 , 3 }
R = { ( 1 , 3 ) , ( 2 , 1 ) , ( 2 , 2 ) , ( 3 , 2 ) }
RELACION TRANSITIVA
R es una relación transitiva en un conjunto A no vacío , si y sólo si cada trío de
elementos de él satisface lo siguiente:
a R b ð b R c ð a R c
Ejemplo:
A = { 1 , 2 , 3 }
R = { ( 1 , 1 ) , ( 1 , 3 ) , ( 2 , 1 ) , ( 2 , 3 ) , ( 3 , 1 ) , ( 3 , 3 ) }
5-. CLASIFICACION DE RELACIONES
RELACION DE EQUIVALENCIA
R es una relación de equivalencia en un conjunto A no vacío , si y sólo si es
refleja, simétrica y transitiva en ese conjunto A .
Ejemplo:
La relación "igual que" ( = ) en el conjunto de los números enteros.
Sean a , b y c números enteros cualesquiera, entonces:
a = a ( Reflexividad )
a = b ð b = a ( Simetría )
a = b ð b = c ð a = c ( Transitividad )
RELACION DE ORDEN
R es una relación de orden en un conjunto A no vacío , si y sólo si es refleja,
antisimétrica y transitiva en ese conjunto A .
Ejemplo:
La relación "menor o igual que" ( ð ) en el conjunto de los números enteros.
Sean a , b y c números enteros cualesquiera, entonces:
a ð a ( Reflexividad )
a ð b ð b ð a ð a = b ( Antisimetría )
a ð b ð b ð c ð a ð c ( Transitividad )
6-. FUNCION
Sean A y B conjuntos no vacíos, f es una función de A en B , si y sólo si
f es una relación de A a B que a cada elemento de A le hace corresponder un y
sólo un elemento de B .
Ejemplo:
A = { a , e , i }
B = { 1 , 3 , 5 , 7 }
f = { ( a , 3 ) , ( e , 7 ) , ( i , 7 ) }
Además su dominio es:
Dom f = A
Su codominio es:
Codom f = B
Su recorrido ( o rango ) es:
Rec f = { 3 , 7 }
Este último es el conjunto de las imágenes de A bajo f .
7-. FUNCION VALOR-ABSOLUTO
La funcion valor absoluto esta definida de la siguiente manera:
Graficamente la función IxI es
Si x es positivo no afecta la función en el número
Si x es negativo la función "lleva al numero"
...