ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Permutaciones


Enviado por   •  6 de Junio de 2013  •  1.394 Palabras (6 Páginas)  •  343 Visitas

Página 1 de 6

Análisis combinatorio

Es la rama de la matemática que estudia los diversos arreglos o selecciones que podemos formar con los elementos de un conjunto dado, los cuales nos permite resolver muchos problemas prácticos. Por ejemplo podemos averiguar cuántos números diferentes de teléfonos, placas o loterías se pueden formar utilizando un conjunto dado de letras y dígitos.

Además el estudio y comprensión del análisis combinatorio no va a servir de andamiaje para poder resolver y comprender problemas sobre probabilidades y sus distintas soluciones.

Principios fundamentales del Análisis Combinatorio:

En la mayoría de los problemas de análisis combinatorio se observa que una operación o actividad aparece en forma repetitiva y es necesario conocer las formas o maneras que se puede realizar dicha operación. Para dichos casos es útil conocer determinadas técnicas o estrategias de conteo que facilitarán el cálculo señalado para obtener lo deseado.

El análisis combinatorio también se define como una manera práctica y abreviada de contar; las operaciones o actividades que se presentan son designadas como eventos o sucesos.

Permutaciones

Hay dos tipos de permutaciones:

1. Se permite repetir: como la cerradura de arriba, podría ser "333".

2. Sin repetición: por ejemplo los tres primeros en una carrera. No puedes quedar primero y segundo a la vez.

1. Permutaciones con repetición

Son las más fáciles de calcular. Si tienes n cosas para elegir y eliges r de ellas, las permutaciones posibles son:

n × n × ... (r veces) = nr

(Porque hay n posibilidades para la primera elección, DESPUÉS hay n posibilidades para la segunda elección, y así.)

Por ejemplo en la cerradura de arriba, hay 10 números para elegir (0,1,...,9) y eliges 3 de ellos:

10 × 10 × ... (3 veces) = 103 = 1000 permutaciones

Así que la fórmula es simplemente:

nr

donde n es el número de cosas que puedes elegir, y eliges r de ellas

(Se puede repetir, el orden importa)

2. Permutaciones sin repetición

En este caso, se reduce el número de opciones en cada paso.

Por ejemplo, ¿cómo podrías ordenar 16 bolas de billar?

Después de elegir por ejemplo la "14" no puedes elegirla otra vez.

Así que tu primera elección tiene 16 posibilidades, y tu siguiente elección tiene 15 posibilidades, después 14, 13, etc. Y el total de permutaciones sería:

16 × 15 × 14 × 13 ... = 20,922,789,888,000

Pero a lo mejor no quieres elegirlas todas, sólo 3 de ellas, así que sería solamente:

16 × 15 × 14 = 3360

Es decir, hay 3,360 maneras diferentes de elegir 3 bolas de billar de entre 16.

¿Pero cómo lo escribimos matemáticamente? Respuesta: usamos la “función vectorial”

La función factorial (símbolo: !) significa que se multiplican números descendentes. Ejemplos:

• 4! = 4 × 3 × 2 × 1 = 24

• 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040

• 1! = 1

Nota: en general se está de acuerdo en que 0! = 1. Puede que parezca curioso que no multiplicar ningún número dé 1, pero ayuda a simplificar muchas ecuaciones.

Así que si quieres elegir todas las bolas de billar las permutaciones serían:

16! = 20,922,789,888,000

Pero si sólo quieres elegir 3, tienes que dejar de multiplicar después de 14. ¿Cómo lo escribimos? Hay un buen truco... dividimos entre 13!...

16 × 15 × 14 × 13 × 12 ... = 16 × 15 × 14 = 3360

13 × 12 ...

¿Lo ves? 16! / 13! = 16 × 15 × 14

La fórmula se escribe:

donde n es el número de cosas que puedes elegir, y eliges r de ellas

(No se puede repetir, el orden importa)

Ejemplos:

Nuestro "ejemplo de elegir en orden 3 bolas de 16" sería:

16! = 16! = 20,922,789,888,000 = 3360

(16-3)! 13! 6,227,020,800

¿De cuántas maneras se pueden dar primer y segundo premio entre 10 personas?

10! = 10! = 3,628,800 = 90

(10-2)! 8! 40,320

(que es lo mismo que: 10 × 9 = 90)

Notación

En lugar de escribir toda la fórmula, la gente usa otras notaciones como:

Combinaciones

También hay dos tipos de combinaciones (recuerda que ahora el orden no importa):

1. Se puede repetir: como monedas en tu bolsillo (5,5,5,10,10)

2. Sin repetición: como números de lotería (2,14,15,27,30,33)

1. Combinaciones con repetición

En realidad son las más difíciles de explicar, así que las dejamos para luego.

2. Combinaciones sin repetición

Así funciona la lotería. Los números se eligen de uno en uno, y si tienes los números de

...

Descargar como (para miembros actualizados) txt (9 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com