Esperanza Matematica
Enviado por chocho64 • 8 de Agosto de 2013 • 3.014 Palabras (13 Páginas) • 3.077 Visitas
Conclusión.
En estadística la esperanza matemática (también llamada esperanza, valor esperado, media poblacional o media) de una variable aleatoria X , es el número E(X) que formaliza la idea de valor medio de un fenómeno aleatorio. Cuando la variable aleatoria es discreta, la esperanza es igual a la suma de la probabilidad de cada posible suceso aleatorio multiplicado por el valor de dicho suceso. Por lo tanto, representa la cantidad media que se "espera" como resultado de un experimento aleatorio cuando la probabilidad de cada suceso se mantiene constante y el experimento se repite un elevado número de veces. Cabe decir que el valor que toma la esperanza matemática en algunos casos puede no ser "esperado" en el sentido más general de la palabra - el valor de la esperanza puede ser improbable o incluso imposible. En el caso de que todos los sucesos son de igual probabilidad, la esperanza es igual a la media aritmética. Una aplicación común de la esperanza matemática es en las apuestas o los juegos de azar.
En lenguaje menos matemático, diremos que estas probabilidades miden las expectativas que podemos tener o las posibilidades que existen de que ocurra un suceso. A las variables aleatorias también podemos designarlas con el nombre de Distribuciones teóricas. La media en una distribución teórica viene dada por la sumatoria de todos los sucesos dividida entre el número de ellos (en la teoría, la palabra media se sustituye por la de Esperanza Matemática.); que matemáticamente se expresa: E(X)=∑▒X_(i.) P_i
La varianza, a su vez, viene dada por: V(X)= ∑▒X_i^2 .P_(i -) E(X)^2. Una distribución de este tipo se representa mediante una tabla en la que estarán contenidos los valores de X y sus probabilidades.
Esperanza Matemática o Valor Esperado
El valor esperado de una Variable Aleatoria X es el promedio o valor promedio de X. La esperanza matemática o valor esperado de una variable aleatoria tiene sus orígenes en los juegos de azar, debido a que los apostadores deseaban saber cuál era su esperanza de ganar repetidamente un juego, por lo tanto, el valor esperado representa la cantidad de dinero promedio que el jugador está dispuesto a ganar o perder después de un número grande de apuestas. En conclusión, el valor esperado de una variable aleatoria después de un número grande de experimentos es su valor esperado. Ahora bien, el valor esperado o la cantidad promedio que se ganaría en cada juego después de un número grande de éstos, se determina multiplicando cada cantidad que se gana o se pierde por su respectiva probabilidad y se suman los resultados. De acuerdo a lo anteriormente dicho, podemos decir que:
Definición: El valor esperado de una variable aleatoria X es el promedio o valor medio de X y está dada por:
E(X)= ∑ xp(x) si x es discreta o x E(X)= ∫ xf(x)dx si x es continua
Propiedades de la Esperanza Matemática.
Combinando estas propiedades, podemos ver que:
donde e son variables aleatorias y , y son tres constantes cualquiera.
Esperanza Matemática de una función de una Variable Aleatoria Discreta
Sea X una variable aleatoria discreta cuya función es P(X=x) y sea Y= g(x) una función de esa variable aleatoria. La esperanza matemática o valor esperado de g(x), denotada por: E(g(X))= ∑ g(x)P(X=x)x. Es decir, para obtener la esperanza matemática se suman los valores de g(x), evaluados encada punto de x, multiplicados por las correspondientes probabilidades P(X=x)
Ejemplo:
Supóngase que se tiene una moneda normal y el jugador tiene tres oportunidades para que al lanzarla aparezca “cara”. El juego termina en el momento en el que cae cara o después de tres intentos, lo que suceda primero. Si en el primero, segundo o tercer lanzamiento aparece “cara” el jugador recibe 2BsF ,4BsF y 8BsF respectivamente. Si no cae cara en ninguno delos tres lanzamientos pierde 20BsF
Ahora bien, para determinar la ganancia o pérdida promedio después de un número muy grande de juegos, declaramos a X como la variable aleatoria que representa la cantidad que se pierde o se gana cada vez que se juega. Después de un número grande de juegos se espera ganar 2BsF en cualquiera de los dos lanzamientos, 4BsFen cualquiera de los cuatro lanzamientos, 8BsF una vez cada 8 lanzamientos y se espera perder 20 BsF una vez encada 8 intentos. Por lo tanto, X= {2,4,8} por ser la variable discreta sustituimos en su respectiva ecuación:
E(X)= 2BsF(1/2)+4BsF(1/4) +8BsF(1/8)+ (-20BsF)(1/8) = 0.50BsF
Esperanza Matemática de una función de una Variable Aleatoria Continua
La idea de media o esperanza de una variable aleatoria continua es equivalente al cálculo de la esperanza de una variable aleatoria continua pero es algo más complicado porque requiere emplear el concepto de integral. La idea intuitiva que más nos puede ayudar en la definición de la esperanza matemática de una variable aleatoria continua es la idea del centro de gravedad de los valores de la variable, donde cada valor tiene una masa proporcional a la función de densidad en ellos. Dada una variable aleatoria absolutamente continua X con función de densidad f(x), se define la esperanza matemática de X como el valor
Suponiendo que la integral exista.
Valor esperado de una variable aleatoria
El valor esperado es una idea fundamental en el estudio de las distribuciones de probabilidad. Para obtener el valor esperado de una variable aleatoria discreta, se multiplica cada valor que la variable puede tomar por la probabilidad de presentación de ese valor y luego se suman esos productos. Es un promedio pesado de los resultados que se esperan en el futuro. El valor esperado pesa cada resultado posible con respecto a la frecuencia con la cual se espera que se presente. En consecuencia, las presentaciones más comunes tienen asignadas un peso mayor que las menos comunes.
El valor esperado también puede ser obtenido a partir de estimaciones subjetivas. En ese caso, el valor esperado no es más que la representación de las convicciones personales acerca del resultado posible.
En muchas situaciones, encontraremos que es más conveniente, en términos de los cálculos que se deben hacer, representar la distribución de probabilidad de una variable aleatoria de una manera algebraica. Al hacer esto, podemos llevar a cabo cálculos de probabilidad mediante la sustitución de valores numéricos directamente en una fórmula algebraica.
Funciones de una variable aleatoria
Sea X una variable aleatoria de la que conocemos su distribución de probabilidad. Nos interesa estudiar una función, Y = g(X).
Dependiendo del tipo de variable aleatoria que
...