Estadistica
arale25048 de Septiembre de 2013
3.398 Palabras (14 Páginas)305 Visitas
ESTADÍSTICA
Se emplean técnicas estadísticas en casi todas las fases de la vida. Un requisito previo para un examen de la teoría de estadística es una definición de estadística y un enunciado de sus objetivos. Una de las primeras definiciones nos dice, a la estadística como una rama de las matemáticas que estudia la recolección, análisis, interpretación y presentación de masa de información numérica, Stuart y Ord expresan: estadística es la rama del método científico que estudia los datos obtenidos por contar o las medir propiedad desde poblaciones, se ocupa esencialmente de procedimientos para analizar información, en especial aquella que en algún sentido vago tenga carácter aleatorio, Freund y Walpole, ven la estadística como una disciplina que abarca, la ciencia de basar inferencias en datos observados y todo el problema de tomar decisiones frente a una incertidumbre. Todos los autores implican que la estadística es una teoría de información siendo la inferencia su objetivo.
La gran recopilación de datos se denomina población y el subconjunto es una muestra. La meta de la estadística es hacer una inferencia acerca de una población, con base en información contenida en una muestra de esa población y dar una medida de bondad asociada para la inferencia.
¿Es mejor que nuestros hijos sean escolarizados antes o después? Esta es una cuestión de interés para muchos padres y también para los gestores públicos. ¿Cómo se puede responder?
Inicialmente, parece razonable que nos planteemos esto a partir de nuestra propia experiencia y de algunas conversaciones mantenidas con los amigos. In embargo, si se quiere convencer a otras personas y obtener consensos, resulta necesario reunir algún tipo de información objetiva.
La Naturaleza De La Estadística
En el mundo de hoy, el que uno debe primero reunir datos para aprender algo se ha convertido en un axioma.
La estadística es el arte de aprender de los datos. Está relacionada con la recopilación de datos, su descripción subsiguiente y su análisis, lo que nos lleva a extraer conclusiones.
Obtención De Datos
En ocasiones un análisis estadístico comienza con un conjunto de datos, la estadística se utiliza después para describir, clasificar y analizar esos datos.
En otras situaciones, los datos no están disponibles, y la estadística puede usar para diseñar un experimento apropiado para generar dichos datos. El experimento elegido dependería de la utilidad que se quiera obtener de los datos.
La parte de la Estadística relacionada con la descripción y la clasificación de los datos se conoce con el nombre de Estadística descriptiva.
Estadística Inferencial Y Modelos De Probabilidad
Cuando se ha completado el experimento, y una vez que se han descrito y clasificado los datos, deberíamos ser capaces de sacar conclusiones sobre la eficacia del mismo.
La parte de la estadística relacionada con la extracción de conclusiones a partir de los datos se conoce con el nombre de Estadística inferencial.
Para poder sacar conclusiones a partir de los datos se ha de tener en cuenta el azar. Una muestra de k miembros de una población se dice que es una muestra aleatoria, en ocasiones llamada muestra aleatoria simple, si los miembros son elegidos de tal forma que todas las posibles elecciones de los k miembros son igualmente probables.
Así, aunque pueda parecer paradójico, es más factible obtener una muestra representativa si sus miembros son elegidos de forma totalmente aleatoria, sin considerar a priori qué elementos deben ser elegidos. En otras palabras no se ha de intentar deliberadamente elegir la muestra de forma que nos parezca que contiene.
ESTADISTICA DESCRIPTIVA
Un objetivo típico en estadística es describir la población con base en información obtenida mediante la observación de relativamente pocos elementos individuales.
Cuando uno se embarca en la solución estadística de algún problema, es necesario desarrollar una cierta secuencia de eventos:
La situación bajo investigación se define cuidadosa y completamente.
Se recolecta una muestra de la población siguiendo un procedimiento establecido e idóneo
Los datos de la muestra se convierten en información útil.
Se aplican las teorías de inferencias estadísticas a la información de la muestra para obtener conclusiones sobre la población muestreada.
La estadística es el lenguaje universal de la ciencia. Como usuarios potenciales de la estadística es necesario dominar la ciencia y el arte de utilizar correctamente su metodología.
La estadística implica información, números y gráficas para resumir esta información y su interpretación.
El terreno de la estadística puede dividirse a grandes rasgos en dos áreas: estadística descriptiva y estadística inferencial. La estadística descriptiva es en lo que piensa la mayoría de las personas al escuchar la palabra estadística. El termino estadística inferencial se refiere a la técnica de interpretación de los valores resultantes de las técnicas descriptivas y a la toma de decisión de conclusiones sobre la población.
Los usos de la estadística son ilimitados. Es mucho más difícil mencionar un campo en que no se utilice la estadística que uno en el que ésta sea para integral:
En educación se utiliza a menudo estadística descriptiva para describir los resultados de los exámenes.
En la ciencia es necesario recolectar y analizar los datos que se obtienen de los experimentos.
En el gobierno siempre se recolectan muchos tipos de datos estadísticos.
La población es la colección completa de individuos u objetos de interés para el recolector de la muestra. La idea más importante en estadística es el concepto de población. La población de interés debe definirse cuidadosamente y se considera que está completamente definida solo cuando se especifica la lista d elementos que pertenecen a ella.
Hay dos tipos de población: finitas e infinitas cuando es posible enumerar físicamente los elementos que pertenecen a una población se dice que la población es finita. Cuando los elementos de una población son ilimitados la población es infinita.
Muestra
Es un subconjunto de la población. Una muestra de los individuos objetos o medidas seleccionados de la población por recolector de la muestra.
Variable
Característica de interés sobre cada elemento individual de una población o muestra. La edad de u estudiante que ingresa a la universidad. El color de su cabello, su estatura y peso son cuatro variables.
Dato
Valor de la variable asociada a un elemento de una población o muestra. Este valor puede ser un número, una palabra o un símbolo.
Experimento
Actividad planeada cuyos resultados producen un conjunto de datos. El experimento incluye las actividades para seleccionar los elementos y obtener los valores de los datos.
Parámetro.
Valor numérico que resume todos los datos de una población completa.
Estadística
Valor numérico que resume los datos de la muestra.
Variable cualitativa de atributos o categórica.
Variable que clasifica o describe un elemento de una población.
Variable cuantitativa o numérica.
Variable que cuantifica un elemento de una población
Variable nominal.
Variable cualitativa que categoriza u elemento de una población. Para datos resultantes de una variable nominal, las operaciones aritméticas no solo carecen de sentido tampoco es posible asignar un orden a las categorías.
Variable ordinal.
Una variable que presenta una posición o clasificación ordenada.
Variable discreta
Una variable cuantitativa que puede asumir un número contable de valores. Intuitivamente, la variable discreta puede asumir los valores correspondientes a puntos aislados o a lo largo de un intervalo de rectas. Es decir entre dos valores cualesquiera hay un hueco.
Variable continúa
Una variable cuantitativa que puede asumir una cantidad incontable de valores. Intuitivamente, la variable continua puede asumir cualquier valor a lo largo de un intervalo de recta, incluyendo cualquier valor posible entre dos valores cualesquiera
Medibilidad y variabilidad
Es un conjunto de datos siempre se espera variación. Si se encuentra poca variación o no se encuentra variación podría suponerse que el instrumento de medición no está calibrado con una unidad suficientemente pequeña
Método de muestreo segado
Método de muestreo que produce valores que difieren sistemáticamente de la población que está siendo muestreada. Un método de muestreo anegado es aquel que no está segado.
ESTADÍSTICA PARA CIENCIAS SOCIALES Y DEL COMPORTAMIENTO.
Elorza, H. (2008).
La conceptualización del empirismo y del positivismo acerca de la naturaleza del proceso de acumulación de conocimiento se ha sustentado siempre en el proceso de inducción. Este principio señala tal como lo plantea Hume, que si observa una cierta regularidad en los procesos naturales entonces es posible generalizar a partir del establecimiento de una ley. De acuerdo con esta visión. El problema de la ciencia es observar cuidadosamente la naturaleza, evitando caer en errores debidos a la posible confusión de causas. El mejor modo de evitar el error es realizar una cuidadosa observación y medición de los fenómenos y utilizar el método experimental para no confundir la verdadera causa de los fenómenos.
Hume ya había planteado
...