GUIA DE EJERCICIOS DISTRIBUCIONES CONTINUAS Y DISCRETAS
Enviado por pacothestyle10 • 9 de Abril de 2013 • 2.313 Palabras (10 Páginas) • 2.845 Visitas
GUIA DE EJERCICIOS DISTRIBUCIONES CONTINUAS Y DISCRETAS
1. De acuerdo con una investigación de la Administrative Management Society, la mitad de las compañías estadounidenses dan a sus empleados 4 semanas de vacaciones después de 15 años de servicio. Encuentre la probabilidad de que entre 6 compañías encuestadas al azar, el número que da a sus empleados 4 semanas de vacaciones después de 15 años de servicio es: a) Cualquiera entre 2 y 5, b) Menor que 3, c) Calcular media y desviación estándar.
2. Se sabe que la probabilidad de que un estudiante de una preparatoria local presente escoliosis es 0.004. De los siguientes 1875 estudiantes que se revisen en búsqueda de escoliosis, encuentre la probabilidad de que: a) Menos de 5 presenten el problema, b) Al menos 50 presenten el problema, c) 8, 9 o 10 presenten el problema.
3. Se conjetura que hay impurezas en 30% del total de pozos de cierta comunidad rural. Si se eligen 10 pozos al azar, determinar la probabilidad de que 3 de ellos tengan impurezas, su media y varianza.
4. Supóngase que estamos investigando la seguridad de un crucero muy peligroso. Los archivos de la policía indican una promedio de cinco accidentes por mes en él. El número de accidentes está distribuido conforme a la distribución de Poisson, y la división de seguridad en carreteras quiere calcular: a) La probabilidad de exactamente 0,1,2,3 y 4 accidentes en un mes determinado, b) La probabilidad de 3 o menos, c) La probabilidad más de 3 accidentes.
5. Hallar la probabilidad de que en una familia de 4 hijos. a) Al menos 1 sea niño, b) Al menos halla un niño y una niña. c) Determinar media y varianza.
6. El peso medio de 500 estudiantes varones de una universidad es de 68.5Kg y la desviación tipificada es de 10Kg, suponiendo que los pesos están distribuidos normalmente, hallar la probabilidad y el número de estudiantes que pesan: a) Entre 48 y 71 Kg. b) Más de 91Kg.
7. Un agricultor que siembra fruta afirma que 2/3 de su cosecha de duraznos ha sido contaminada por la mosca del mediterráneo. Encuentre la probabilidad de que al inspeccionar 4 duraznos: a) Los 4 estén contaminados. b) Cualquier cantidad entre 1 y 3 estén contaminados. c) media y varianza
8. Cierto tipo de batería dura un promedio de 3 años, con una desviación de 5 años. Suponiendo que las duraciones de las baterías son normalmente distribuidas, encuentre la probabilidad de que una determinada batería dure menos de 2.3 años.
9. Si un banco recibe en promedio 6 cheques sin fondo por día. ¿Cuál es la probabilidad de que reciba: a) 4 cheques sin fondo en un día dado. b) 10 cheques sin fondos en cualquiera de dos días consecutivos?
10. En un cierto proceso de manufactura se sabe que, en promedio 10 de cada 100 piezas esta defectuosa. ¿Cuál es la probabilidad de que la séptima pieza inspeccionada sea la defectuosa?
11. Si la probabilidad de que un individuo sufra una reacción negativa ante una inyección de cierto suero es de 0.001, hallar la probabilidad de que entre 2000 individuos: a) Exactamente 3 reaccionen negativamente. b) Más de 2 de ellos reaccionen negativamente.
12. Cierto tipo de batería para automóviles tiene un tiempo de vida normalmente distribuido con media de 1200 días y desviación estándar de 100 días. ¿Por cuánto tiempo se deben garantizar las baterías si el fabricante quiere remplazar sólo el 10 por ciento de las baterías vendidas?
13. Se sabe que el tiempo promedio requerido para terminar un examen es de 70 minutos con una desviación estándar de 12 minutos. ¿Cuánto tiempo debe asignarse si se desea que el 90 por ciento de los estudiantes tengan suficiente tiempo para terminar el examen?. (Suponga que el tiempo requerido para terminar el examen tiene una distribución normal).
14. Las puntuaciones en una prueba de aprovechamiento tienen una distribución normal con media igual a 500 y desviación estándar igual a 100. si Juan obtuvo 650 puntos, ¿Qué fracción del total de estudiantes consiguieron una puntuación mayor que la de Juan?
15. Ciertos estudios demuestran que el consumo de gasolina de los autos medianos tienen una distribución normal con un consumo medio de 25.5 km por galón y una desviación estándar de 4.5 km por galón. ¿Qué porcentaje de autos medianos obtienen 30 o más km por galón?
16. Cierto tipo de batería dura un promedio de 3.0 años, con una desviación estándar de 0.5 años. Suponiendo que las duraciones de las baterías son normalmente distribuidas, encuentre la probabilidad de que una determinada batería dure menos de 2.3 años.
17. Los promedios de aprovechamiento de una población grande de estudiantes tienen una distribución normal con media igual a 2.4 y desviación estándar igual a 0.8 si los estudiantes que tienen un promedio de aprovechamiento menor o igual a 1.9 deben abandonar la universidad, ¿Qué porcentaje de los estudiantes deben irse?
18. Supóngase que el diámetro externo de cierto tipo de cojinetes se encuentra de manera aproximada, distribuido normalmente con media igual a 3.5 cm. y desviación estándar igual a 0.02cm. Si el diámetro de estos cojinetes no debe ser menor que 3.47cm ni mayor de 3.53cm, ¿Cuál es el porcentaje de cojinetes, durante el proceso de su manufactura que debe desecharse?
19. Las líneas telefónicas del sistema de reservación de una aerolínea, están ocupadas 40% del tiempo. Suponga que los eventos donde las líneas están ocupadas en llamadas sucesivas son independientes. Suponga que hacen diez llamadas telefónicas al sistema de reservación. a) ¿Cuál es la probabilidad de que, al llamar exactamente tres veces, las líneas estén ocupadas?, b) ¿Cuál es la probabilidad de que al menos en una de las llamadas, las líneas no estén ocupadas, c) ¿Cuál es el nuero esperado de llamadas en las que todas las líneas estarán ocupadas?
20. Un examen de opción múltiple contiene 25 preguntas, cada una con cuatro respuestas. Suponga que un estudiante sólo adivina las respuestas. a) ¿Cual es la probabilidad de que el estudiante conteste de manera correcta menos de cinco preguntas?, b) ¿Cuál es la probabilidad de que estudiante conteste de manera correcta mas de 20 preguntas?
21. Un artículo electrónico contiene 40 circuito integrados. La probabilidad de que cualquier circuito integrado esté defectuoso es 0.01, y los circuito integrados son independientes. El artículo solo trabaja si no contiene circuitos defectuosos. ¿Cuál es la probabilidad de que el artículo trabaje?
22. Dado que no todos los pasajeros de una aerolínea abordan el vuelo para el que
...