ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

INVESTIGACION OPERATIVA

DANCIS8226 de Abril de 2012

6.573 Palabras (27 Páginas)1.127 Visitas

Página 1 de 27

Ejercicios resueltos de programación lineal

Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio.

1Elección de las incógnitas.

x = nº de lámparas L1

y = nº de lámparas L2

2Función objetivo

f(x, y) = 15x + 10y

3Restricciones

Pasamos los tiempos a horas

20 min = 1/3 h

30 min = 1/2 h

10 min = 1/6 h

Para escribir las restricciones vamos a ayudarnos de una tabla:

L1 L2 Tiempo

Manual 1/3 1/2 100

Máquina 1/3 1/6 80

1/3x + 1/2y ≤ 100

1/3x + 1/6y ≤ 80

Como el número de lámparas son números naturales, tendremos dos restricciones más:

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

Tenemos que representar gráficamente las restricciones.

Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.

Representamos las rectas, a partir de sus puntos de corte con los ejes.

Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto del plano, por ejemplo el (0,0).

1/3•0 + 1/2•0 ≤ 100

1/3•0 + 1/6•0 ≤ 80

La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

La solución óptima si es única se encuentra en un vértice del recinto. éstos son las soluciones a los sistemas:

1/3x + 1/2y = 100; x = 0 (0, 200)

1/3x + 1/6y = 80; y = 0(240, 0)

1/3x + 1/2y = 100; 1/3x + 1/6y = 80(210, 60)

6 Calcular el valor de la función objetivo

En la función objetivo sustituimos cada uno de los vértices.

f(x, y) = 15x + 10y

f(0, 200) = 15•0 + 10•200 = 2 000 €

f(240, 0 ) = 15•240 + 10•0 = 3 600 €

f(210, 60) = 15•210 + 10•60 = 3 750 € Máximo

La solución óptima es fabricar 210 del modelo L1 y 60 del modelo L1 para obtener un beneficio de 3 750 € .

Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta, empaquetándolo de dos formas distintas; en el primer bloque pondrá 2 cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de cada paquete serán 6.5 y 7 €, respectivamente. ¿Cuántos paquetes le conviene poner de cada tipo para obtener el máximo beneficio?

1Elección de las incógnitas.

x = P1

y = P2

2Función objetivo

f(x, y) = 6.5x + 7y

3Restricciones

P1 P2 Disponibles

Cuadernos 2 3 600

Carpetas 1 1 500

Bolígrafos 2 1 400

2x + 3y ≤ 600

x + y ≤ 500

2x + y ≤ 400

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(x,y)= 6.5 • 200 + 7 • 0 = 1300 €

f(x,y)= 6.5 • 0 + 7 • 200 = 1 400 €

f(x,y)= 6.5 • 150 + 7 • 100 = 1 675 € Máximo

La solución óptima son 150 P1 y 100 P2 con la que se obtienen 1 675 €

En una granja de pollos se da una dieta, para engordar, con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B. El precio del tipo X es de 10 euros y del tipo Y es de 30 €. ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo?

1Elección de las incógnitas.

x = X

y = Y

2Función objetivo

f(x,y) = 10x + 30y

3Restricciones

X Y Mínimo

A 1 5 15

B 5 1 15

x + 5y ≥ 15

5x + y ≥ 15

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(0, 15) = 10 • 0 + 30 • 15 = 450

f(15, 0) = 10 • 15 + 30 • 0 = 150

f(5/2, 5/2) = 10 • 5/2 + 30 • 5/2 = 100 Mínimo

El coste mínimo son 100 € para X = 5/2 e Y = 5/2.

Se dispone de 600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas. Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un beneficio de 2 € y la pequeña de 1 €. ¿Cuántas pastillas se han de elaborar de cada clase para que el beneficio sea máximo?

1Elección de las incógnitas.

x = Pastillas grandes

y = Pastillas pequeñas

2Función objetivo

f(x, y) = 2x + y

3Restricciones

40x + 30y ≤ 600

x ≥ 3

y ≥ 2x

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(x, y)= 2 • 3 + 16 = 22 €

f(x, y)= 2 • 3 + 6 = 12 €

f(x, y)= 2 • 6 + 12 = 24 € Máximo

El máximo beneficio es de 24 €, y se obtiene fabricando 6 pastillas grandes y 12 pequeñas .

Unos grandes almacenes desean liquidar 200 camisas y 100 pantalones de la temporada anterior. Para ello lanzan, dos ofertas, A y B. La oferta A consiste en un lote de una camisa y un pantalón, que se venden a 30 €; la oferta B consiste en un lote de tres camisas y un pantalón, que se vende a 50 €. No se desea ofrecer menos de 20 lotes de la oferta A ni menos de 10 de la B. ¿Cuántos lotes ha de vender de cada tipo para maximizar la ganancia?

1Elección de las incógnitas.

x = nº de lotes de A

y = nº de lotes de B

2Función objetivo

f(x, y) = 30x + 50y

3Restricciones

A B Mínimo

Camisas 1 3 200

Pantalones 1 1 100

x + 3y ≤ 200

x + y ≤ 100

x ≥ 20

y ≥ 10

4 Hallar el conjunto de soluciones factibles

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(x, y) = 30 • 20 + 50 • 10 = 1100 €

f(x, y) = 30 • 90 + 50 • 10 = 3200 €

f(x, y) = 30 • 20 + 50 • 60 = 3600 €

f(x, y) = 30 • 50 + 50 • 50 = 4000 € Máximo

Con 50 lotes de cada tipo se obtiene una ganancia máxima de 4000 €.

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:

Llamando, respectivamente r, s y t a las rectas expresadas en las tres últimas restricciones, la zona de soluciones factibles sería:

Siendo los vértices:

A intersección de r y t:

B intersección de s y t:

C intersección de r y s:

Siendo los valores de la función objetivo en ellos:

Alcanzándose el mínimo en el punto C.

PROBLEMA #2 Un herrero con 80 kgs. de acero y 120 kgs. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente a 20.000 y 15.000 Bolívares cada una para sacar el máximo beneficio. Para la de paseo empleará 1 kg. De acero y 3 kgs de aluminio, y para la de montaña 2 kgs. de ambos metales. ¿Cuántas bicicletas de paseo y de montaña venderá?

Sean las variables de decisión:

x= n: de bicicletas de paseo vendidas.

y= n: de bicicletas de montaña vendidas.

Tabla de material empleado:

Acero Aluminio

Paseo 1 3

Montaña 2 2

Función objetivo:

f(x, y)= 20.000x+15.000y máxima.

Restricciones:

Zona de soluciones factibles:

Vértices del recinto (soluciones básicas):

A(0, 40)

B intersección de r y s:

C(40,0)

Valores de la función objetivo en los vértices:

Ha de vender 20 bicicletas de paseo y 30 de montaña para obtener un beneficio máximo de 850.000 Bolívares.

PROBLEMA #3 Un autobús Caracas-Maracaibo ofrece plazas para fumadores al precio de 10.000 Bolívares y a no fumadores al precio de 6.000 Bolívares. Al no fumador se le deja llevar 50 kgs. de peso y al fumador 20 kgs. Si el autobús tiene 90 plazas y admite un equipaje de hasta 3.000 kg. ¿Cuál ha de ser la oferta de plazas de la compañía para cada tipo de pasajeros, con la finalidad de optimizara el beneficio?

Sean las variables de decisión:

x= n: de plazas de fumadores.

y= n: de plazas de no fumadores.

La Función objetivo:

f(x, y)=10.000x+6.000y máxima

Restricciones:

...

Descargar como (para miembros actualizados) txt (37 Kb)
Leer 26 páginas más »
Disponible sólo en Clubensayos.com