QUIMICA EXANI 2
Enviado por • 22 de Noviembre de 2013 • 2.941 Palabras (12 Páginas) • 464 Visitas
QUIMICA.
1.- ESTRUCTURA ATOMICA
1.1.-EL ATOMO: ESTRUCTURA Y PROPIEDADES.
Partículas subatómicas
A pesar de que átomo significa ‘indivisible’, en realidad está formado por varias partículas subatómicas. El átomo contieneprotones, neutrones y electrones, con la excepción del hidrógeno-1, que no contiene neutrones, y del catión hidrógeno ohidrón, que no contiene electrones. Los protones y neutrones del átomo se denominan nucleones, por formar parte del núcleo atómico.
El electrón es la partícula más ligera de cuantas componen el átomo, con una masa de 9,11 • 10−31 kg. Tiene una carga eléctrica negativa, cuya magnitud se define como la carga eléctrica elemental, y se ignora si posee subestructura, por lo que se lo considera una partícula elemental. Los protones tienen una masa de 1,67 • 10−27 kg, 1836 veces la del electrón, y una carga positiva opuesta a la de este. Los neutrones tienen un masa de 1,69 • 10−27 kg, 1839 veces la del electrón, y no poseen carga eléctrica. Las masas de ambos nucleones son ligeramente inferiores dentro del núcleo, debido a laenergía potencial del mismo; y sus tamaños son similares, con un radio del orden de 8 • 10-16 m o 0,8 femtómetros (fm).
El protón y el neutrón no son partículas elementales, sino que constituyen un estado ligado de quarks u y d, partículas fundamentales recogidas en el modelo estándar de la física de partículas, con cargas eléctricas iguales a +2/3 y −1/3 respectivamente, respecto de la carga elemental. Un protón contiene dos quarks u y un quark d, mientras que el neutrón contiene dos d y un u, en consonancia con la carga de ambos. Los quarks se mantienen unidos mediante la fuerza nuclear fuerte, mediada por gluones —del mismo modo que la fuerza electromagnética está mediada por fotones—. Además de estas, existen otras partículas subatómicas en el modelo estándar: más tipos de quarks, leptones cargados (similares al electrón), etc.
El núcleo atómico
Los protones y neutrones de un átomo se encuentran ligados en el núcleo atómico, la parte central del mismo. El volumen del núcleo es aproximadamente proporcional al número total de nucleones, el número másico A, lo cual es mucho menor que el tamaño del átomo, cuyo radio es del orden de 105 fm o 1 ångström (Å). Los nucleones se mantienen unidos mediante la fuerza nuclear, que es mucho más intensa que la fuerza electromagnética a distancias cortas, lo cual permite vencer la repulsión eléctrica entre los protones.
Los átomos de un mismo elemento tienen el mismo número de protones, que se denomina número atómico y se representa por Z. Los átomos de un elemento dado pueden tener distinto número de neutrones: se dice entonces que sonisótopos. Ambos números conjuntamente determinan el núclido.
El núcleo atómico puede verse alterado por procesos muy energéticos en comparación con las reacciones químicas. Los núcleos inestables sufren desintegraciones que pueden cambiar su número de protones y neutrones emitiendo radiación. Un núcleo pesado puede fisionarse en otros más ligeros en una reacción nuclear o espontáneamente. Mediante una cantidad suficiente de energía, dos o más núcleos pueden fusionarse en otro más pesado.
En átomos con número atómico bajo, los núcleos con una cantidad distinta de protones y neutrones tienden a desintegrarse en núcleos con proporciones más parejas, más estables. Sin embargo, para valores mayores del número atómico, la repulsión mutua de los protones requiere una proporción mayor de neutrones para estabilizar el núcleo.
Nube de electrones.
Los electrones en el átomo son atraídos por los protones a través de la fuerza electromagnética. Esta fuerza los atrapa en un pozo de potencial electrostático alrededor del núcleo, lo que hace necesaria una fuente de energía externa para liberarlos. Cuanto más cerca está un electrón del núcleo, mayor es la fuerza atractiva, y mayor por tanto la energía necesaria para que escape.
Los electrones, como otras partículas, presentan simultáneamente propiedades de partícula puntual y de onda, y tienden a formar un cierto tipo de onda estacionaria alrededor del núcleo, en reposo respecto de este. Cada una de estas ondas está caracterizada por un orbital atómico, una función matemática que describe la probabilidad de encontrar al electrón en cada punto del espacio. El conjunto de estos orbitales es discreto, es decir, puede enumerarse, como es propio en todo sistema cuántico. La nube de electrones es la región ocupada por estas ondas, visualizada como una densidad de carga negativa alrededor del núcleo.
Cada orbital corresponde a un posible valor de energía para los electrones, que se reparten entre ellos. El principio de exclusión de Pauli prohíbe que más de dos electrones se encuentren en el mismo orbital. Pueden ocurrir transiciones entre los distintos niveles de energía: si un electrón absorbe un fotón con energía suficiente, puede saltar a un nivel superior; también desde un nivel más alto puede acabar en un nivel inferior, radiando el resto de la energía en un fotón. Las energías dadas por las diferencias entre los valores de estos niveles son las que se observan en las líneas espectrales del átomo.
Masa
La mayor parte de la masa del átomo viene de los nucleones, los protones y neutrones del núcleo. También contribuyen en una pequeña parte la masa de los electrones, y la energía de ligadura de los nucleones, en virtud de la equivalencia entre masa y energía. La unidad de masa que se utiliza habitualmente para expresarla es la unidad de masa atómica (u). Esta se define como la doceava parte de la masa de un átomo neutro de carbono-12 libre, cuyo núcleo contiene 6 protones y 6 neutrones, y equivale a 1,66 • 10-27 kg aproximadamente. En comparación el protón y el neutrón libres tienen una masa de 1,007 y 1,009 u. La masa de un átomo es entonces aproximadamente igual al número de nucleones en su núcleo —el número másico— multiplicado por la unidad de masa atómica. El átomo estable más pesado es el plomo-208, con una masa de 207,98 u.
En química se utiliza también el mol como unidad de masa. Un mol de átomos de cualquier elemento equivale siempre al mismo número de estos (6,022 • 1023), lo cual implica que un mol de átomos de un elemento con masa atómica de 1 u pesa aproximadamente 1 gramo. En general, un mol de átomos de un cierto elemento pesa de forma aproximada tantos gramos como la masa atómica de dicho elemento.
Tamaño
Los átomos no están delimitados por una frontera clara, por lo que su tamaño se equipara con el de su nube electrónica. Sin embargo, tampoco puede establecerse una medida de esta, debido a las propiedades ondulatorias
...