Matematica Basica
Enviado por 8098838866 • 5 de Julio de 2013 • 1.119 Palabras (5 Páginas) • 1.348 Visitas
Participante de Matemática Básica:
En estos momentos estaremos iniciando el tema de "Las operaciones básicas con expresiones algebraicas". Es necesario conocer los procedimientos para realizar dichas operaciones y esto solo se adquiere con la investigación, la lectura y si es necesario, la observación de la realización de algunas operaciones.
En esta tarea debes investigar en la bibliografía básica, complementaria o en la web, el tema: Operaciones básicas con Expresiones Algebraicas (adición, sustración, multiplicación y división) y redacta un informe Teórico práctico donde describas el procedimiento para realizar cada operación y al menos una demostración de cada operación descrita.
Expresiones algebraicas
Una expresión algebraica, en una o más variables (letras), es una combinación cualquiera de estas variables y de números, mediante una cantidad finita de operaciones: adición, sustracción, multiplicación, división, potenciación o radicación.
Tipos de Expresiones Algebraicas. Expresiones Algebraicas Racionales
Irracionales enteras Fraccionarias
Polinomios son las expresiones algebraicas más usadas. Sean a0, a1, a2,…, unos números reales y un número natural, llamaremos polinomio en indeterminada x a toda expresión algebraica entera de la forma: a0 + a1 x + a2 x2 + … + an xn
Términos Monomio: polinomio con un solo término. Binomio: polinomio con dos términos. Trinomio: polinomio con tres términos. Cada monomio así se llama término. El polinomio será de grado n si el término de mayor grado es anxn con an0.A a0 se le llama término independiente. se le llama término principal. Suma de Polinomios para sumar dos polinomios se agrupan los términos del mismo grado y se suman sus coeficientes
Ejemplo: Sumar los siguientes polinomios P(x) = -2x4 + 5x3 – 3x + 1 Q(x) = 3x3 – 6x2 – 5x – 2
Resta de Polinomios para restar el polinomio Q(x) del polinomio P(x) se debe sumar a P(x) el opuesto de Q(x). P(x) – Q(x) = P(x) + [ - Q(x) ]Ejemplo: Restar los siguientes polinomios P(x) = -2x4 + 5x3 – 3x + 1 Q(x) = 3x3 – 6x2 – 5x – 2
Multiplicación de Polinomios Para multiplicar dos polinomios se multiplica cada monomio de uno de ellos por cada uno de los términos del otro y luego se suman los términos de igual grado. Ejemplo: Multiplicar los siguientes polinomios P(x) = -2x4 + 5x3 – 3x + 1 Q(x) = 3x3 – 6x2 – 5x – 2P(x).Q(x) = P(x) 3x3 + P(x) (-6x2 ) + P(x) (-5x ) + P(x)(-2)
División de polinomios dados los polinomios D(x) = 6x3 – 17x2+15x-8 d(x) = 3x – 4 determinar, si es posible, dos polinomios c(x) y r(x) tales que D(x) = d(x). C(x) + r(x) de modo que el grado de r(x) sea menor que el grado de d(x) o bien r(x)=Op(x)
Adición de expresiones algebraicas
Una suma algebraica es una operación matemática donde intervienen la suma y la resta, como por ejemplo en 11–4+13–2−6+3; cada número de la suma separado por un signo más o un signo menos se denomina término. Por ejemplo: 2+2=4
Los términos precedidos por el signo más (siguiendo con el ejemplo anterior: 11, 13, 3) se llaman términos positivos y los términos precedidos por el signo menos (−4, −2, −6) se llaman términos negativos. Para resolver una suma algebraica, se suman los términos positivos y se le resta la suma de los términos negativos. Si la resta no puede realizarse, se invierten el minuendo y el sustraendo y a la diferencia se le antepone el signo menos.
Ab+cd=ad + bc bd
Sustracción de Expresiones algebraicas
Resta
Resta es uno de los cuatro principios
...