ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Distribuciones Continuas


Enviado por   •  13 de Septiembre de 2014  •  983 Palabras (4 Páginas)  •  663 Visitas

Página 1 de 4

DISTRIBUCIÓN DE PROBABILIDAD CONTINUA

En teoría de la probabilidad una distribución de probabilidad se llama continua si su función de distribución es continua. Puesto que la función de distribución de una variable aleatoria X viene dada por F_X(x) = P( X \le x ), la definición implica que en una distribución de probabilidad continua X se cumple P[X = a] = 0 para todo número real a, esto es, la probabilidad de que X tome el valor a es cero para cualquier valor de a. Si la distribución de X es continua, se llama a X variable aleatoria continua.

En las distribuciones de probabilidad continuas, la distribución de probabilidad es la integral de la función de densidad, por lo que tenemos entonces que:

Mientras que en una distribución de probabilidad discreta un suceso con probabilidad cero es imposible, no se da el caso en una variable aleatoria continua. Por ejemplo, si se mide la anchura de una hoja de roble, el resultado 3,5 cm es posible, pero tiene probabilidad cero porque hay infinitos valores posibles entre 3 cm y 4 cm. Cada uno de esos valores individuales tiene probabilidad cero, aunque la probabilidad de ese intervalo no lo es. Esta aparente paradoja se resuelve por el hecho de que la probabilidad de que X tome algún valor en un conjunto infinito como un intervalo, no puede calcularse mediante la adición simple de probabilidades de valores individuales. Formalmente, cada valor tiene una probabilidad infinitesimal que estadísticamente equivale a cero.

En aplicaciones prácticas, las variables aleatorias a menudo ofrecen una distribución discreta o absolutamente continua, aunque también aparezcan de forma natural mezclas de los dos tipos.

DISTRIBUCIONES CONTINUAS

Las distribuciones de variable continua más importantes son las siguientes:

• Distribución Beta

• Distribución Exponencial

• Distribución F

• Distribución Gamma

• Distribución Ji Cuadrado

• Distribución Normal

• Distribución T De Student

DISTRIBUCIÓN NORMAL

En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece aproximada en fenómenos reales.

La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro estadístico. Esta curva se conoce como campana de Gauss y es el gráfico de una función gaussiana.

La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, sociales y psicológicos. Mientras que los mecanismos que subyacen a gran parte de este tipo de fenómenos son desconocidos, por la enorme cantidad de variables incontrolables que en ellos intervienen, el uso del modelo normal puede justificarse asumiendo que cada observación se obtiene como la suma de unas pocas causas independientes.

La distribución normal también es importante por su relación con la estimación por mínimos cuadrados, uno de los métodos de estimación más simples y antiguos.

Algunos ejemplos de variables asociadas a fenómenos naturales que siguen el modelo de la normal son:

• caracteres morfológicos de individuos como la estatura;

• caracteres fisiológicos como el efecto de un fármaco;

• caracteres sociológicos como el consumo de cierto producto por un mismo grupo de individuos;

• caracteres psicológicos como el cociente

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com