LÓGICA PROPOSICIONAL.
Enviado por lck3000 • 26 de Octubre de 2016 • Apuntes • 6.144 Palabras (25 Páginas) • 491 Visitas
TEMA | : | LÓGICA PROPOSICIONAL |
1.
a) Si m y n son proposiciones, se define la operación * así: m * n = m ˄ n[pic 2]
Simplifique:
m ≡ [ ( p ˄ ~q) ˅ ~( p ˅ q ) ] ~( p ˅ q )[pic 3]
n ≡ [ p( q ˅ ~r ) ] ˄ [ p → ( q ˄~r ) ] ˄ [ p ˄ ( q → r ) ] si se sabe que q y r no tienen el mismo valor de verdad.[pic 4]
Solución:
n ≡ [ p( q ˅ ~r ) ] ˄ [ p → ( q ˄~r ) ] ˄ [ p ˄ ( q → r ) ] “Condicional”[pic 5]
n ≡ [ p( q ˅ ~r ) ] ˄ [ ~p ˅ ( q ˄~r ) ] ˄ [ p ˄ ( ~q ˅ r ) ] “Morgan”[pic 6]
n ≡ [ p( q ˅ ~r ) ] ˄ [ ~p ˅ ( q ˄~r ) ] ˄ [ p ˄ ~( q ˄ ~r ) ][pic 7]
n ≡ [ p( q ˅ ~r ) ] ˄ [ ~p ˅ ( q ˄~r ) ] ˄ ~[ ~p ˅ ( q ˄ ~r ) ][pic 8]
n ≡ [ p( q ˅ ~r ) ] ˄ s ˄ ~s[pic 9]
n ≡ [ p( q ˅ ~r ) ] ˄ F[pic 10]
Luego:
m * n = m ˄ n[pic 11]
= ~m ˄ F
= F Rpta.
b) Si la preposición p ʌ q ʌ r ʌ s es falsa simplifique la proposición.
{(p → q) ʌ [ q → ( r ʌ s ) ]} → ~ [ ( r ʌ s ) → p ]
Solución:[pic 12]
{( p → q ) ʌ [ q → m ]} → ~[ m → p ]
~{( p → q ) ʌ [ q → m ]} ᴠ ~[ m → p ]
~{(~p ᴠ q ) ᴧ [ ~q ᴠ m ]} ᴠ ~[~m ᴠ p ]
{~(~p ᴠ q ) ᴠ ~(~q ᴠ m )} ᴠ [ m ᴧ~p ]
( p ᴧ ~q) ᴠ ( q ᴧ ~m) ᴠ [ m ᴧ ~p ]
( p ᴧ ~q ) ᴠ {( q ᴧ ~m ) ᴠ [ m ᴧ ~p ]}
( p ᴧ ~q ) ᴠ {[ q ᴠ ( m ᴧ ~p )] ᴧ [~m ᴠ ( m ᴧ ~p )]}
[pic 13]
[pic 14]
[ q ᴠ p ᴠ ( m ᴧ ~p )] ᴧ [~p ᴠ ~q ᴠ ~m ]
[ q ᴠ p ᴠ m ] ᴧ ~[ p ᴧ q ᴧ m ]
[ q ᴠ p ᴠ m ] ᴧ ~[ F ]
[ q ᴠ p ᴠ m ] ᴧ V
q ᴠ p ᴠ m
q ᴠ p ᴠ ( r ᴧ s ) Rpta
2.
a) ([pic 15]
Demostraremos:
- [pic 16]
- [pic 17]
Resolución:
- [pic 18]
[pic 19]
[pic 20]
[pic 21]
[pic 22]
[pic 23]
[pic 24]
[pic 25]
[pic 26]
[pic 27]
[pic 28]
[pic 29]
[pic 30]
[pic 31]
[pic 32]
[pic 33]
[pic 34]
[pic 35]
- [pic 36]
[pic 37]
[pic 38]
[pic 39]
[pic 40]
[pic 41]
[pic 42]
[pic 43]
[pic 44]
[pic 45]
l.q.q.d[pic 46]
[pic 47]
[pic 48]
[pic 49]
[pic 50]
[pic 51]
[pic 52]
[pic 53]
[pic 54]
[pic 55]
[pic 56]
l.q.q.d[pic 57]
3.
Demostrar que A Δ (B Δ C) = (A Δ B) Δ C
Demostración:
A Δ (B Δ C)
{A ∩ (B Δ C)’} U {A’ ∩ (B Δ C)}
{A ∩ [ (B’ ∩ C) U (B ∩ C’)]’} U {A’ ∩ [(B’∩C) U (B ∩ C’)]}
{A ∩ [(B’ ∩ C)’∩ (B ∩ C’)’]} U {[(A’ ∩ (B’ ∩ C)] U (A’ ∩ B ∩ C’)}
{A ∩ [(B U C’) ∩ (B’ U C)]} U {(A’ ∩ B’ ∩ C)] U (A’ ∩ B ∩ C’)}
{A ∩ (B U C’) ∩ (B’ U C)} U {(A’ ∩ B’ ∩ C) U (A’ ∩ B ∩ C’)}
{A ∩ (B’ U C) ∩ (B U C’)} U {(A’∩ B’∩ C) U (A’ ∩ B ∩ C’)}
{[(A ∩ B’) U (A ∩ C)] ∩ (B U C’)} U {(A’∩ B’∩ C) U (A’ ∩ B ∩ C’)}
{[(A ∩ B’) ∩ (B U C’)] U [(A ∩ C) ∩ (B U C’)]} U {(A’∩ B’∩C) U (A’ ∩ B ∩ C’)}
{[(A ∩ B’ ∩ B) U (A ∩ B’ ∩ C’) U (A ∩ C ∩ B) U (A ∩ C ∩ C’)]} U {(A’∩ B’∩ C) U (A’∩ B ∩ C’)}
{Ø U (A ∩ B’ ∩ C’) U (A ∩ C ∩ B) U Ø} U {(A’ ∩ B’ ∩ C) U (A’ ∩ B ∩ C’)}
(A ∩ B’ ∩ C’) U (A ∩ C ∩ B) U (A’∩ B’∩ C) U (A’ ∩ B ∩ C’)
(A ∩ B’ ∩ C’) U (A’ ∩ B ∩ C’) U (A ∩ B ∩ C) U (A’∩ B’∩ C)
{(A ∩ B’) U (A’ ∩ B)] ∩ C’} U {[(A ∩ B) U (A’ ∩ B’)] ∩ C}
{(A Δ B) ∩ C’} U {[(A ∩ (B U A’)] U [(A’ U B) ∩ B’)] ∩ C}
{(A Δ B) ∩ C’} U {[(A’ U B) ∩ (A U B’)] ∩ C}
{(A Δ B) ∩ C’} U {[(A ∩ B’)’ ∩ (A’ ∩ B)’] ∩ C}
{(A Δ B) ∩ C’} U {[(A ∩ B’) U (A’ ∩ B)]’ ∩ C}
{(A Δ B) ∩ C’} U {(A Δ B)’ ∩ C}
{(A Δ B) Δ C Lqqd.
TEMA | : | LÍMITES |
1.- Sea f definida mediante
[pic 58]
Determine si existen las asíntotas a la gráfica de f
Solución
- Cálculo de las asíntotas verticales[pic 59]
[pic 60]
[pic 61]
- [pic 62]
- Cálculo de las asíntotas horizontales[pic 63]
[pic 64]
-4[pic 65]
[pic 66]
[pic 67]
[pic 68]
[pic 69]
[pic 70]
[pic 71]
[pic 72]
[pic 73]
...